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ABSTRACT 

This research was undertaken to study the relationships between the performance 

of locally available asphalts and their physicochemical properties under Iowa conditions 

with the ultimate objective of development of a locally and perfoimance-based asphalt 

specification for durable pavements. 

Physical and physicochemical tests were performed on three sets of asphalt 

samples including: (a) twelve samples from local asphalt suppliers, (b) six core samples 

of known service records, and (c) a total of 79 asphalt samples from 10 pavement 

projects including original, lab aged, and recovered asphalts from field mixes and lab 

aged mixes. Tests included standard rheological tests, HP-GPC, and TMA. Some 

specific viscoelastic tests at S°C were run on the (b) samples and some (a) samples. 

DSC and X-ray diffraction studies were performed on the (a) and (b) samples. In 

addition, NMR techniques were applied to some (a), (b), and (c) samples. 

Efforts were made to identify physicochemical properties which are correlated to 

physical properties known to affect field performance. The significant physicochemical 

parameters were used as a basis for an improved performance-based trial specification 

for Iowa to ensure more durable pavements. 
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I. INTRODUCTION 

Current specifications for asphalt cement contain limits on physical properties 

based on correlations established in the past with field performance of asphalt 

pavements. Recently, however, concerns have arisen that although current asphalts in 

use meet these specifications, they are not consistently providing the long service life 

once achieved. 

There are a number of logically possible explanations of this situation: 

(1) A considerable concern is associated with the changes in the world crude oil supply 

and the economic climate after the 1973 oil embargo which may have affected the 

properties of asphalt of certain origin [47]. Blending several crudes, as routinely 

practiced in refineries to produce asphalts meeting current specifications, may have upset 

certain delicate balances of compatibility between various asphaltic constituents, which 

may manifest itself in their long-term field performance but not in original physical 

properties specified in the specifications [37,82]. 

(2) Tlie increased volume and loads of traffic on highways, which have occurred over 

the decades, may have shortened the life span of pavements, indicating the necessity of 

revising specification limits and/or imposing new provisions to maintain desired 

durability. 

(3) Inadequate mixture design, particularly gradation of aggregates, changing 

construction practices and improper use of additives may also be responsible for early 

deterioration of asphalt pavements [4,47]. 

(4) Specifications based only on physical properties of asphalts do not guarantee 
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adequate performance. The physical properties currently being used in specifications 

have been empirically developed and can not be considered as fundamental properties. 

The Strategic Highway Research Program (SHRP) [101] showed that the physical 

properties of asphalts are governed by chemical composition. A physical state at a 

given temperature can be achieved by several different combinations of chemical 

compositions which result in widely different physical states at different temperatures. 

Furthermore, some performance characteristics, such as resistance to moisture damage, 

are directly related to chemical makeup of asphalt and aggregate. 

Tlie selection of asphalts based on performance-related properties, tests, and 

specifications is one of the key factors for durable asphalt pavements. The performance 

of pavements could also be improved by judicious application of improved mix design 

techniques, more rational thickness design procedures, and better construction methods 

and quality control measures. 

Asphalts used in the state of Iowa were collected and their physical properties 

were determined. Tlie asplialt samples were also analyzed by high performance gel 

permeation chromatography (HP-GPC), thermomechanical analyzer (TMA), differential 

scanning calorimetry (DSC), X-ray diffraction (XRD), and nuclear magnetic resonance 

(NMR). The results were correlated with properties known to affect field performance. 

On the basis of the correlations, trial performance-based specifications for the state of 

Iowa were developed. 
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II. LITERATURE REVIEW 

Asphalt is a complex mixture of chemical compounds. Chemical composition of 

asphalt governs physical and engineering properties of asphalt which, in turn, determine 

performance or distresses of asphalt pavements. Major distress modes in asphalt 

pavement failure are low temperature thermal cracking, fatigue cracking, rutting, and 

moisture damage. Pavements crack when asphalts do not have enough viscous 

properties to accommodate thermal contraction and expansion resulting from temperature 

fluctuations or repeated deformation by traffic. Pavements rut when asphalts do not 

possess enough elasticity or stiffness at high pavement temperatures. Certain 

combinations of asphalt and aggregate are very susceptible to water invasion and result 

in stripping problems (moisture damage). In these kinds of pavement failures, chemical 

composition of asphalt plays a signifîcant role. In this chapter, some conventional 

physical tests, physical parameters, and specifications often used by asphalt technologists 

to build asphalt pavements and to estimate performance of pavements are reviewed. 

Chemical properties of asphalt and characterization techniques used in this dissertation 

research are also discussed. The relationships between the chemical properties of 

asphalt and tlieir physical properties are also reviewed in this chapter. 

A. Physical Properties of Asphalt 

I. Historical development of asphalt testing methods 

At the beginning of asphalt paving history from the 1870s to the 1890s, Trinidad 

Lake asphalt and Bermudez Lake asphalt were the primary sources of the asphalt used 
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for pavement construction in the United States. The promoters of these native asphalts 

exercised a monopoly and attempted to restrict the use of other asphalts, especially 

petroleum asphalts refined from crude oils. In this period, merely to identify the source 

of an asphalt and to restrict the use of petroleum asphalts or untried sources, simple 

asphalt specifications were used. These specifications consisted of the appearance of the 

crude asphalt and analytical tests to determine amounts of bitumen, organic insolubles, 

and inorganic matter. Because these solid native asphalts were blended with fluxes to 

reduce their consistency, volatility and hardening of fluxed asphalts during construction 

and in service became a great concern. To determine and control the volatility and 

hardening of asphalts, oven heat tests were developed. As more various sources of 

asphalt were used in construction, specifications were needed to control the quality of 

asphalts. Penetration tests were developed to determine and control consistency of 

asphalt. Several other test methods for determining the Geological properties of asphalt 

also had been developed and used on a local basis [41,78]. 

Schweyer [93] discussed dozens of test methods and equipment developed over 

several decades from a simple penetration test device to a vety complicated instrument 

to characterize the viscoelastic properties of asphalt. 

Along with the penetration test, softening point and viscosity measurements 

became the most commonly employed standard physical tests for an asphalt study and 

specification. These three test methods are briefly reviewed as follows. 

In the penetration test (ASTM D 5 and AASHO T 49), penetration depth of a 

specific needle into an asphalt is recorded in tenths of a millimeter under a specific 
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temperature, load, and period of time. 

Softening point (ASTM D 36 and AASHO T 53) represents the approximate 

melting point of a^halt. Softening point is used because melting of asphalt does not 

take place at a definite temperature. As the temperature rises, asphalt gradually changes 

from an extremely viscous and slow-flowing material to a softer and less viscous liquid. 

Softening point is determined by an arbitrary and closely defined method. A ring filled 

with asphalt and loaded with a steel ball is heated in a bath and the temperature at 

which the asphalt reaches a certain deformation is reported as the ring and ball softening 

point, Tr*b-

For determining absolute or kinematic viscosity of asphalt at 60°C or higher, 

precisely manufactured and calibrated vacuum tubes or capillary tubes are used (ASTM 

D 2170, D 2171 and AASHO T 201, T 202). At temperatures of 25°C or lower, a cone 

and plate viscometer (ASTM D 3205) is used where viscosity is determined as a 

function of the shear rate. Asphalt placed between the cone and plate is simply sheared 

by a constant torque and the shear rate is determined from the angular velocity. Shear 

index, the slope of the log viscosity versus log shear rate plot, and complex flow, the 

slope of the log shear stress versus log shear rate plot, can be determined. 

These tliree rheological properties, penetration, softening point, and viscosity, are 

very closely related with one another. Although there are some discrepancies [30,92], 

generally at ring and ball softening point, asphalts are considered to have a penetration 

of 800 (25*C, lOOg, 5sec) and a viscosity of 1,300 Pa s [43,83]. 

Low temperature properties of asphalt have received a great amount of attention 
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due to their significant influence on pavement cracking. To study low temperature 

Theological properties of asphalt, the Schweyer constant stress rheometer and the Fraass 

brittle point test are commonly employed [93]. The Schweyer constant stress riieometer 

allows measurement of rheological properties at -ICC or lower. Shear modulus, 

stiffness and viscosity can be determined from creep response of asphalt in a tube [103]. 

In the Fraass brittle point test, a thin film of asphalt coated on a metal plaque is 

cooled and flexed in accordance with specified conditions. The temperature at which 

the asphalt first becomes brittle as indicated by the appearance of cracks is referred to as 

the Fraass breaking point. Tliis temperature can be -26*C or lower for some asphalts. 

At this breaking point, asphalts are believed to have a viscosity of about 4 x 10" Pa s 

and a stiffiiess of 1.1 x 10" Pa at an 11 second loading time [107]. 

After five years of study (1987-1992), the Strategic Highway Research Program 

proposed new asphalt specifications utilizing very complex and delicate asphalt testing 

equipment [101 J. For example, a dynamic shear rheometer measures dynamic responses 

of asphalt samples placed between two parallel plates to sinusoidally applied shear stress 

or strain. Li the strain controlled test, dynamic modulus can be calculated using the 

following equation: 

IG*((o)l = lx(o))l / Iy(0))I 

where, IG*((d)I = dynamic shear modulus at frequency (O, 
It((0)I = absolute magnitude of shear stress response, and 
IY((o)I = absolute magnitude of applied shear strain. 
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In viscoelatic materials such as asphalts, the response lags behind the applied shear 

strain or stress. The amount of lagging is expressed by the phase angle, 6. Purely 

elastic materials have a 0° phase angle while purely viscous materials have a 90° phase 

angle. For presentation of viscoelastic properties measured by the dynamic shear 

rheometer, the dynamic shear modulus is divided into two components; one, in-phase 

with the applied strain (storage modulus, O'((o), an elasticity measure) and another, out-

of-phase with the applied strain (loss modulus, G"(œ), an viscosity measure). 

Calculations of these two modulus are as follows: 

G'(ti)) = IG*(0))l cos 5 

G"(to) = IG*((û)l sin 6, and 

G"((0) / G'(co) = tan Ô 

The ratio of the moduli, tan 5, is an important indicator describing viscoelastic 

properties of asphalt. The strain levels in the dynamic shear rheometer measurement 

must be within the linear region and at a frequency which represents highway traffic 

loading. A frequency of 10 rad/sec is used for specification puiposes. This equipment 

measures viscoelastic properties of asphalt at intermediate to upper temperature ranges. 

For low temperature characterization, asphalts are subjected to both a bending 

beam rheometer and a direct tension device. The bending beam rheometer measures 

creep stiffness at an 8 to 240 seconds loading time scale. For the measurement, a 

constant load is applied at the mid point of an asphalt beam with dimensions of 127 mm 
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X 12.7 mm x 6.35 mm (5 inch x 0.5 inch x 0.25 inch). The device can measure creep 

stiffnesses from 2.8 x 10' kPa to 2.8 x 10® kPa which typically occur in the temperature 

range from -40°C to 25°C. The direct tension device measures tensile failure properties 

in the temperature region where asphalt behaves in a brittle manner. An asphalt 

specimen cast in a dog-bone shape is elongated at a specified rate until rupture occurs. 

This procedure determines strain-to-failure as an aq)halt performance indicator at low 

pavement temperatures. All of the above SHRP tests are performed at varying 

temperatures related to the region where the asphalt pavement will be placed. Details of 

the significance of these tests will be discussed in Section E of this chapter. 

2. Temperature susceotibilitv of asphalt properties 

Viscoelatic properties of asphalt (for example, viscosity) change drastically with 

temperature. In practice, asphalt cement is required, at high temperatures, to retain its 

consistency in order to hold the aggregate matrix together and to resist traffic loading 

without permanent deformation. At low temperatures, asphalt cement must be soft 

enough to prevent cracking induced by thermal and traffic action. This temperature 

dependency of asphalts is expressed by a term 'temperature susceptibility*. The 

temperature susceptibility is the rate at which the consistency of an asphalt changes with 

a change in temperature [87]. 

Several parameters for characterizing the temperature susceptibility of asphalt 

have been proposed for use as indicators of asphalt performance. Penetration ratio (PR), 

for example, is the simplest way to determine temperature susceptibility which has had 
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local application [76]. 

Pj^ ^ Penetration at 4®C, 200g, 60sec 
Penetration at 25®C, lOOg, 5sec 

Pfeiffer and van Doormaal [83] found a linear relationship between the logarithm 

of the penetration and temperature. They presented an expression, the so-called 

penetration index (PI) for temperature susceptibility, which becomes about zero for road 

paving asphalt. 

pj ^ 20 - 500 A 
1 + 50 A 

where, A = temperature susceptibility parameter and is defined as follows: 

A = (Log 800 - Log (pen at 25°C)}/(Tr»b - 25) 
Trab = ring and ball softening point, "C 

Heukelom [43] modified the equation for A using penetrations at two different 

temperatures, T, and Tj; 

A = (Log (pen at T, ) - Log (pen at T2))/(T, - Tj) 

McLeod [74-76] presented the penetration-viscosity number (PVN) based on an 
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empirical correlation among penetration at 25°C, viscosity at 60 or ISS'C, and Pfeiffer 

and van Doormaal's PI for a few carefully selected 'wax free' asphalts. PVN is 

represented as: 

PVN = Log L - Log X 
Log L - Log M 

where 

X = measured viscosity in centistokes (10^ mVs) at 135®C, 
L = viscosity at 135®C for PVN = PI = 0, and 
M = viscosity at 135°C for PVN = PI - -1.5. 

Viscosity-temperature susceptibility (VTS) is another measure used to determine 

temperature susceptibility [7,76]. 

VTS = LPg Logl0n,-Log LoglOn^ 

LogTj-LogTj 

where, T), and T); are the viscosities in Pa s at temperatures T, and T, in degrees Kelvin. 

To describe the relationship between viscosity and temperature, Heukelom [43] 

used the Williams, Landel and Ferry (WLF) equation [112] and developed the bitumen 

test data chart (BTDC) where the viscosity-temperature relationship of straight run 

asplialts is represented by a single straight line. Based on BTDC plot, asphalts are 

categorized by three classes: Class S for straight run bitumen, Class B for blown 
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asphalts and Class W for waxy bitumen. In the BTDC plot, Class B and Class W 

deviate from the straight line of Class S. 

Bell [7] presented a numerical procedure which classified a^halts into Classes S, 

B and W by comparison of predicted and measured penetration at 2S°C and derived the 

Class Number (CN). Positive CN indicates Class W and negative CN indicates Class B. 

When CN is within the range of ±2, the asphalt belongs to Class S. He noted that high 

positive or negative values of CN indicated a large difference between high and low 

temperature susceptibility. Lower PR, PI and PVN and greater VTS indicate greater 

temperature susceptibility. 

3. Asphalt rlieoloav 

Asphalt rheology is characterized by time-temperature dependent response to 

applied stresses and has been described by the structural concept, empirical power law, 

and mathematical representations [72,77] which are reviewed in this section. A 

mathematical descriptions of stress-strain relationships in asphalt defined by Heukelom 

[45] are also reviewed. The mathematical representation of viscoelasticity of asphalt 

mostly rely on the time-temperature superposition principle [112] and generalize the 

time and temperature dependency of asphalt. Van der Poel's [107] and SHRP's [101] 

generalizations are reviewed. Some practical uses of van der Poel's procedure are also 

reviewed. 

In the structural representation of flow behavior, the deformation of asphalt is 

considered to be the result of the movement of flow units, that is, groups of molecules. 
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Tlie application of shear stress may result in the degradation of these flow units. 

Considering the thermodynamics of an asphalt system, the associated complexes (flow 

units) are probably spherical in shape. On application of shear stress, the complexes 

elongate and flow through the oily medium. As the stress increases, the association 

bonds in the complexes start to break and continue breaking until the extent of the 

breakup is in equilibrium with the applied stress. An increase in temperature also 

reduces the size of the flow units. These changes in the flow units affect the rheological 

properties of asphalt [72,77]. 

The empirical power law of flow behaviors is represented by a linear relationship 

between log shear stress and log shear rate. As a simple example, a typical creep test is 

used as shown in Figure 1. Under static load at constant temperature, asphalt exhibits 

linear elastic response, delayed elastic response, and creep behavior. The initial elastic 

response can be used to calculate elastic or shear modulus of asphalt. Tlie slope of the 

creep response is the strain or shear rate corresponding to a given stress and test 

temperature. Viscosity can be calculated from the relationship, shear stress = viscosity x 

shear rate. Upon unloading, there is an immediate elastic strain recoveiy and then a 

delayed elastic strain recovery. Creep results in nonrecoverable strain or permanent 

defomiation [103]. Changing applied shear stress results in a different shear rate and a 

different creep curve. From a series of creep tests, shear stress and rate can be plotted 

as a straight line on a log-log plot. Tlie slope of the line, c, changes in log shear stress 

divided by changes in log shear rate, is referred to as the degree of complex flow or the 

shear susceptibility. Schweyer et al. [95] demonstrated the importance of shear 
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Ql 1— 
0 

Time 

Creep 

Elastic recovery 

Delayed elastic recovery 
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susceptibility in detennining the viscosity of asphalt. Depending on the selection of 

shear rate for the viscosity calculation, the viscosity of an asphalt may be greater than, 

equal to, or less than that of another asphalt having a different shear susceptibility. 

Changing the test temperature wiU result in a different response. 

In general, flow behaviors of asphalts are categorized into three types: 

Newtonian, pseudoplastic, and dilatant behaviors [64,103]. At high temperatures in 

excess of 25°C or near mixing temperature (~135°C), paving asphalts often exhibit 

Newtonian flow behavior, that is, having a linear relationship between stress and strain 

rate without elastic response (shear susceptibility, c, equal to 1). At low temperatures 

and low shear stresses, asphalts exhibit pseudoplastic or shear thinning behavior. As 

shear stress or shear rate increases viscosity decreases (c<l). Age hardening of asphalt 

results in more pseudoplastic behavior with a smaller c value [64,82]. For highly air 

blown asphalt, yield point may exist as in Bingham plastic behavior. At high 

temperature and high shear rate levels, asphalts can exhibit shear thickening, that is, an 

increase of viscosity with increased shear rate or shear stress. This condition is referred 

to dilatant behavior (c>l). A large deviation of the c value from one indicates high 

shear susceptibility of asphalt. For some asphalts, flow behavior may change from 

pseudoplastic to Newtonian and to dilatant as the shear stress is increased [103]. 

Heukelom [45] described the ideological behavior of asphalt as the summation of 

individual elastic, viscous and delayed elastic behaviors and defined the stiffness 

modulus of bituminous material, S, as the ratio of stress, a, and strain, e, and as a 

function of temperature, T, and loading time, t. 
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S(t,T) . 1 
e 

Modulus of elasticity (E) is described as a bulk effect of all the hydrocarbon 

molecules of an asphalt instantaneously being deformed by an applied load. Asphalts 

h a v e  a  n e a r l y  c o n s t a n t  e x p e r i m e n t a l  v a l u e  o f  E  =  2 . 7  x  1 0 '  P a .  E l a s t i c  s t r a i n ,  e , ,  

caused by external stress, o, is defined by 

g ^ stress(o) 
elastic modulus(E) 

In a colloidal system of asphalt, applied stress would be transmitted through the 

liquid phase to the molecular agglomerates. For constant stress, a, viscous strain of an 

asphalt having viscosity, T], is 

and depends on loading time, t, and temperature, T. 

The molecular agglomerates cause delayed elastic behavior, the bulk effect of 

which is described by a modulus of delayed elasticity D(t,T). Delayed elastic strain is 

stress(a) 
®d 

delayed elastic modulus(D) 

When these three characteristic strains are assumed to be independent of one 

another, the total strain, e, becomes 
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Tlien, the stiffness of asphalt, S, can be expressed as 

s E 3n D 

At very short loading time and low temperature, asphalt essentially behaves as an 

elastic solid. At very long loading time, the term with viscosity in the above equation is 

the largest so that the behavior becomes viscous. At moderate loading time, the delayed 

elastic effects influence the transition from elastic to viscous behavior [5]. 

A number of attempts have been made to generalize the viscoelastic properties of 

asphalt over wide ranges of temperature and time variables by use of the time-

temperature superposition principle [13,14,19,22,31,56,77,91,96,98,99,107,108]. 

Rheological properties derived from dynamic measurements or from steady flow 

measurements are represented by two generalized curves: (a) the dependence of 

rheological properties on reduced time variables, such as frequency or shear rate and (b) 

the dependence of the shift factor on temperature. These generalizations allow 

prediction of viscoelastic properties of asphalt at any conditions. Van der Poel [107] 

and Brodnyan [13] proposed procedures that determined the viscoelastic properties of 

asphalt with a penetration at 2S°C and the softening point. Based on the Williams-

Laiidel-Ferry (WLF) equation [112], Schmidt and Santucci [91] presented a method to 
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predict viscosities at various shear rates and temperatures from a measured glass 

transition temperature and viscosity determined at 60°C. 

Simple instruments capable of measuring asphalt stiffness at low temperatures 

have not been available and accurate stiffiiess measurements obtained from some 

instruments have been considered to be too complex and expensive for routine pavement 

design and analysis procedures. In practice, asphalt stiffness at low temperature has 

usually been predicted by a generalized procedure discussed above, such as van der 

Poel's procedure [5]. In van der Poel's procedure [107], a nomograph is used to 

determine the stiffiiess at temperature, T, and loading time, t, for a given bitumen with 

known PI and softening point. In his nomograph, hardness is expressed by temperature 

and ring and ball softening point, 7,*^, is used as a reference temperature at which all 

asphalts are considered to have the same viscosity. The temperature difference from the 

softening point, Tr^b-T, is used for a hardness parameter. Temperature dependent 

properties are expressed by penetration index, PI [45]. Van der Poel's nomograph has 

been revised by Heukelom [43] and McLeod [76] using modified PI and PVN discussed 

earlier. Generally, Heukelom's procedure is believed to give more accurate stiffness 

prediction than others [5]. 

Using this procedure, pavement cracking temperature can be predicted. Asphalt 

pavements crack when asphalts reach a limiting or critical asphalt stiffness. By using 

this limiting stiffness as an input in van der Poel's nomograph together with T^^g or 

Tgoo^n (temperature where penetration is 800 at 25°C, lOOg, and 5sec), PI and selected 

loading time, cracking temperature can be determined. This temperature is sometimes 
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referred to as temperature of equivalent stiffness (TES). 

Another commonly used procedure, together with the van der Poel's procedure, 

to predict pavement cracking temperature is that of Hills'. He [46] reported a critical 

thermal stress of 5x10* Pa (72.5 psi) to induce pavement cracking. Based on that, he 

developed a nomograph to estimate cracking temperature from only two penetration 

values, penetration at 25°C and penetration at 5*0. 

Among several explicit mathematical models characterizing master curves of 

viscoelastic properties of asphalt is one developed through SHRP [17,101]. In this 

model, master curves for the dynamic modulus of asphalts are characterized by four 

characteristic parameters which are defined as follows: 

The glassy modulus. IG*,I: the value that the dynamic modulus approaches at 
low temperatures and high frequencies and is very close to 1 GPa in shear 
loadbig for most asphalt cements. 

The steady-state viscosity. T),: the steady-state or Newtonian viscosity as the 
phase angle approaches 90°. The 45° slope that the dynamic master curve 
approaches at low frequencies is frequently referred to as the viscous asymptote, 
and is indicative of the steady-state viscosity of a given asphalt. 

The crossover frequency. (ù„: the frequency where the storage modulus and the 
loss modulus aie equal (tan 5=1). This parameter is believed to be related to 
the hardness of asphalt. 

The rheological index. R: the difference between log IG*,I and log IG*((i)g)l. 
Tliis parameter is believed to be related to the width of the relaxation spectrum. 

These parameters are illustrated in Figure 2. 

The temperature dependency of viscoelastic properties above the glass transition 

temperature is characterized by the William-Landel-Ferry (WLF) equation; 
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log a(T)/a(T,) = C,(T-T,)/(Cj+T-T,) 

where, a(T)/a(T,) = the shift factor relative to the glass transition temperature, 

C„ Q = empirically determined constants which can be fixed, for all 
asphalts studied, to -19 and 92, respectively, and 

T, Tg = the selected temperature and the glass transition temperature in 
®C, respectively. 

Below the glass transition temperature, an Arhennius function is used; 

log a(T)/a(T,) = 2.303 (1/T - l/T,) 

where, E, = the activation energy for flow below T, which can be fixed to 261 
kJ/mol, 

Rg„ = the ideal gas constant, 8.314 J/mol-®K. 

When linear viscoelasticity is assumed, by knowing these three of the four characteristic 

parameters, e.g. %, ©o, and R ( IG*,! is already known, 1 GPa), the dynamic modulus 

of asphalt cement at any temperature and frequency can be determined using following 

equation and using the shift factor equations discussed above. At the reference 

temperature, the dynamic modulus at the frequency (O can be determined as follows: 

IG*(û))l = IG*,I (1+ 
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aiul the pliase angle at frequency (D can be determined by 

6((0) = 90/{l +(g)/0)„)<"'8'>'") 

Tlie variables are the same as defined previously. 

B. Chemical Properties of Asphalt 

Asphalt is defined as a dark brown to black cementitious material in which the 

predominating constituents are bitumens which occur in nature or are obtained in 

petroleum processing. Bitumen is a mixture of hydrocarbons of natural or pyrogenous 

origin, or a combination of both and is completely soluble in carbon disulfide [6]. 

Chemical studies have shown that asphalt is a complex mixture of organic molecules 

containing from simple hydrocarbons to higlily condensed aromatic ring systems. While 

carbon and hydrogen are the predominant elements in asphalt, heteroatoms (oxygen, 

nitrogen and sulfur) are present together with trace amount of metals, mainly vanadium 

and nickel [82]. 

I. Asphalt chemical model 

Generally, asphalt has been considered to be a colloidal system [40,70,84]. The 

tlu-ee main constituents of the asphalt colloid system are asphaltenes, asphaltic resins and 

oily constituents. The asphaltenes are the dispersed phase in the dispersion medium of 

the asphaltic resins and the oily constituents. According to the description of this 
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system by Pfeiffer [84], the asphaltenes are the center of micelles which are formed by 

adsorption and absoiption of the resins on the surfaces or the interiors of the 

asphaltenes. The resins with the greatest molecular weight and with the strongest 

aromatic nature are arranged the most closely to the nuclei of the micelles. Again, these 

are surrounded by lighter resins of less aromaticity and so on, until a gradual transition 

to the intermicellar phase is formed. When there are not enough resins, part of the 

forces causing tlie formation of the micelle are not compensated by adsorption of 

asphaltic resins. The micelles will be subjected to mutual attraction and finally form a 

gel structure. This gel structure is responsible for complex flow of asphalt, such as 

elasticity and thixotropy. 

Recently, through the Strategic Highway Research Program (SHRP), a new 

asphalt model has been proposed [101]. According to the model, named the 

microstructural model, asphalts consist of a solvent moiety and dispersed moiety. The 

solvent moiety is composed of relatively aliphatic and non-polar molecules while the 

dispersed moiety is composed of polar and aromatic molecules. A large number of the 

molecules comprising the dispersed moiety are believed to be multifunctional and can be 

associated tlirough molecular forces including hydrogen bonds, dipole interaction, and n-

n interactions. Tliese interactions allow formation of microstructure. Tlie 

microstructures, structural units formed by molecular association, are dispersed by the 

solvent moiety. In paving asphalts, it is believed that the microstructures associate into 

three-dimensional structuring or networks. Both, the microstructure and the three-

dimensional structures, may be broken up or dissociated by heat and shear. Oxidative 
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agtng will promote more structuring by increasing the number of polar molecules and 

will also increase the solvent power of the dispersing moiety. 

2. Separation of asphalt into fractions 

Because of extremely large number of molecules in asphalt with different 

chemical structures and reactivities, asphalt is usually fractionated into less complex and 

more homogeneous fractions for further characterization. A classical analytical 

procedure separating asphalt into asphaltenes, resins, and oils is Hubbard-Stanfield 

method [48]. In this procedure, asphaltenes are separated as n-pentane insolubles. 

Remaining fraction (maltene, n-heptane soluble) is adsorbed on alumina. Oils and resins 

are obtained by washing with n-pentane and with methanol-benzol 10:90 solution, 

respectively. 

Schweyer and Traxler [94] presented a procedure of asphalt partitioning with 

partial solvents. By use of n-butanol and acetone, asphalt is divided into asphaltics, 

paraffinics and cyclics. Because the fractions separated are not clearly different in their 

chemical nature, this procedure has not been widely used [82]. 

Corbett [19] presented a fractionation method using adsoiption-elution 

cliromatography on alumina. First, asphaltene fraction is separated as an n-heptane 

insoluble fraction. Then, the remaining maltene fraction is adsorbed on a 

chromatographic column and sequentially desorbed with solvents with increasing 

polarity. Saturates, naphthene aromatics and polar aromatics are obtained in the order of 

elution. Corbett described the asphaltenes as solution thickeners. The saturate and 
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nnphlliene aromatic fractions were considered as a plasticizer for the polar aromatic and 

asphaltene fractions. The polar aromatics were believed to be responsible for the 

ductility of the asphalt. This separation procedure has been adopted as an standard by 

American Society for Testing and Materials (ASTM D 4124). 

The Rostler fraction method is based on chemical precipitation [89]. After 

separation of asphaltenes (A) as an n-pentane precipitate, the remaining fraction is 

further separated into fractions based on their reactivity with sulfuric acid. With 

increasing acid strength, nitrogen base (N), first acidaffin (Al) and second acidaffin 

(A2) fractions are separated. The remaining fraction is called paraffîn fraction (P). 

Rostler described the asphaltenes as the solid components of asphalts and said they are 

primarily responsible for asphalt viscosity and colloidal behavior due to their limited 

solubility in tlie balance of components. The asphaltenes dispersed by the nitrogen 

bases were solvated by the acidaffins and gelled by the paraffins. He found that on 

oxidation, the nitrogen base and the first acidaffin fractions underwent the greatest 

change while the second acidaffin and paraffin fractions were changed very little. He 

believed that much of the nitrogen base changed into the asphaltenes and the first 

acidaffins into the nitrogen bases on oxidation. Changes from the first acidaffins to the 

asphaltenes were limited due to insufficient chemical reactivity of the first acidaffin to 

form large size molecules. 

During SHRP [101], two separation techniques have been developed for asphalt 

cements. First, ion exchange chromatography (lEC) separates asphalt in fractions of 

molecules having similar functionalities [11,101]. In this procedure, asphalts are 
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dissolved in solution and separated with anionic and cationic resins. By using solvents 

with different polarities, asphalt was separated into neutrals, weak acids, weak bases, 

strong acids, strong bases, and amphoterics. Hie neutrals are relatively small in size and 

free of functional groups and the amounts in asphalts ranged from 50 to 60%. The 

amphoterics are molecules which, by definition, possess both acidic and basic 

functionalities and are the other major components in asphalt. By infra-red functional 

group analysis, it was found that the amphoterics are highly aromatic species containing 

strongly polar functionalities such as carboxylic acids and 2-quinolones. The amounts 

of amphoterics in asphalt ranged from 15 to 20%. 

Second, a size exclusion chromatography (SEC) separation in preparative scale 

was developed to separate asphalts into fractions having different hydrodynamic volumes 

in solution [101]. In this procedure, aq)halt is dissolved in toluene and pumped into a 

column containing SEC gel with a pore size of 170 A. Gravimetrically obtained 

cliromatograms show bimodal peaks. It was found that the materials of the first peak 

(emerging earlier) were nonfluorescing under 350-360 nm UV lamp indicating large 

associations of aromatic polar molecules. The nonfluorescing materials are denoted as 

SEC fraction-I which comprise 10 to 30% of the asphalts tested. Molecular weights of 

these fractions, measured in toluene at 60°C by vapor phase osmometry (VPO), ranged 

from 5,000 to 11,000 daltons. The materials of the second peak, denoted as SEC 

fraction-n, was fluorescing under the UV light. Their molecular weights determined by 

VPO are much smaller than those of SEC fraction-I and are believed to be solvent 

moieties. 
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3. Asuhallenes 

Asphaltenes are soluble in benzene and insoluble in low-molecular weight n-

paraffln hydrocarbons, usually n-pentane or n-heptane. The solubility of tlie polar 

components in pentane or heptane depends on many variables such as functional group 

type and content, molecular weight, and molecular structure. Many polar components of 

the resin fraction have been found to have functionality similar to that of asphaltenes 

[85]. A gel permeation chromatography study of asphaltenes (n-pentane insoluble) and 

maltenes or petrolenes (n-pentane soluble) indicated considerable overlap in their size 

distributions [39]. Long [68] indicated that precipitation of asphaltenes by alkane 

solvent was dependent on the polarity and molecular weight of the asphaltene 

component. Less polar materials of higher molecular weight and more polar materials 

of lower molecular weight both would precipitate as asphaltenes. Boduszynski [10] 

found that the initial composition of an asphalt was another important factor detennining 

the amount of asphaltene precipitation. When one asphalt was treated with pentane and 

heptane, he obtained 17% and 10.6% of asphaltenes, respectively. Tlie pentane 

asphaltenes were further treated with heptane and 87% of asphaltenes (14.8% of whole 

asphalt) were obtained. Similar results were shown for decane asphaltenes (5.9%) and 

heptane-decane asphaltenes (9.7%). He concluded that treatment with a normal alkane 

upset tlie solubility equilibrium of a very complex mixture of various compounds 

comprising asphalt or its fraction. 

Speight and Moschopedis [100] reported that for several asphalts from different 

sources, H/C ratios of n-pentane aq)haltenes were about 1.15 with very small variation. 
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The average n-heptane precipitate had a higher degree of aromacity, having lower H/C 

ratios, than the average n-pentane precipitate. Higher concentrations of heteroatoms (O, 

S and N) were also found in the n-heptane precipitates. Based on these data and data 

from spectroscopic studies of asphaltenes, they described asphaltenes as condensed 

polynuclear aromatic ring systems with alkyl side chains. The number of rings may 

vary from 6 to 20. A study of the thermal decomposition of asphaltenes indicated that 

81% of oxygen, 23% of sulfur and 1% of nitrogen in asphaltenes were lost [100]. 

Nitrogen and sulfur are believed to have stability due to their location in heterocyclic 

ring systems while oxygen is located mostly on the alkyl sidechains in the form of 

thermally labile carboxylate groups. 

Yen [114] studied asphaltenes using X-ray diffraction and found stacking of 

planar aromatic molecules with five or six layers. This stacking was considered to 

occur via the n-n association. Metals could be coordination centers for the stacking by 

locating defective centers (gaps and holes) of the aromatic portions of the sheet. 

Experimentally determined molecular weights of asphaltenes vary very widely in 

part due to the technique used in their determination. In addition, the nature of the 

solvent and the solution temperature used in the determination of asphaltene molecular 

weight affect asphaltene association and observed molecular weight [100]. 

4. Effects of asphalt composition on physical properties 

Polar functionality of molecules and interactions of various components 

determine the riieology and durability of asphalt. Mack [70] concluded that high 
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relative viscosity of asphalt was caused by association rather than by solvation. He 

defined solvation as a chemical combination between solute and solvent or as some form 

of attachment of the solvent to the dispersed phase. Association of the solute molecules, 

however, results in high relative viscosity due to tlie inability of the solvent to overcome 

the space lattice forces which cause the polymeric bond. The maximum degree of 

association is obtained at a certain concentration of asphaltenes, which differs with 

different temperatures and is different for different asphalts. 

Altgelt and Harle [3] studied the effects of asphalt composition on asphalt 

rheology. They chromatographed an asphalt using SEC and separated it into seven 

fractions based on molecular weight. Asphaltenes were obtained from each fraction by 

precipitation with n-pentane. They found the viscosity of asphaltene-benzene solutions 

increased with increasing molecular weight of asphaltenes. It was believed that 

asphaltenes of low molecular weight consisting of single sheets of condensed aromatic 

and naphthenic rings with attached short side chains, had less flow resistance than 

asphaltenes of very large molecular weight which formed extended networks with higlily 

compacted sheets. When a heavy asphaltene fraction was dissolved in a number of 

solvents having different solvent powers, the viscosity of the solutions increased with 

decreasing solvent power. While the solvent power effects on heavy asphaltenes were 

extremely significant, the effects on low-molecular weight asphaltenes were minimal. 

Petersen [82] pointed out that intermolecular forces and the geometry of 

molecules are significant chemical properties governing rheological properties of asphalt. 

At high temperatures, flow behaviors of asphalts are nearly Newtonian and are similar. 
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Polar interactions among molecules are the dominating factor in this situation. 

However, as the temperature is decreased, the a^halt molecules start to associate and 

form a more or less arranged structure. This ordered arrangement is greatly influenced 

by the geometry of the molecules as well as the polar functionality [82]. For these 

reasons, differences in chemical composition can result in significantly different flow 

properties at low temperatures. In 1966, Welbom et al. [Ill] reported that at 

temperatures higher than 60*C, there were relatively small differences in temperature 

susceptibility of asphalts being used in the United States but significant differences 

occurred in the temperature range between 4°C and 60°C. 

During SHRP [101], the relationship between the chemical composition of 

asphalts and physical properties of asphalts were studied. A statistical study was 

performed so that the fundamental chemical properties of asphalt were used to explain 

important physical properties that determine asphalt pavement performance. The three 

basic chemical properties considered were aromaticity, molecular size (and distribution), 

and polarity. The aromaticity (A) was represented by the ratio of hydrogen to carbon. 

TJie average molecular weight was expressed by the carbon number (C) at peak 

maximum of supercritical fluid chromatography (SFC) of lEC neutral fractions. The 

size distribution was represented by the width of the SPC peak (W) at its one-half 

height. Polarity was expressed by heteroatom content (H), the relative molar 

concentration of the sum of nitrogen, oxygen, and sulfur in asphalt. The physical 

properties studied were viscosity, temperature susceptibility, and aging index, a viscosity 

ratio before and after an aging procedure. Though only eight asphalts were used in the 
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statistical analysis, the results have a significant meaning showing trends between an 

asphalt's chemistry and its physical properties. The viscosity of the lEC neutral 

fraction, at 2S°C was strongly related to its molecular weight and aromaticity: 

log tIn = 5.23 + 0.0606 (C) - 3.69 (A) 

r^ = 0.971 P-value < 0.001 

where, C = carbon number at SFC peak maximum of the lEC neutral 
fraction, 

A = the ratio of hydrogen to carbon for the lEC neutral fraction. 

As molecular weight increases (higher C) or as aromaticity increases (lower A), the 

viscosity of the lEC neutral fraction increases. The variable C, the carbon number at 

SFC peak maximum, was much more significant than variable A, the hydrogen to 

carbon ratio, indicating the lEC neutral fraction is chemically simple so that the classic 

viscosity-molecular weight relation is observed. 

A regression equation to predict viscosity (T|ac) of whole asphalt at 25®C is as 

follows: 

TIac = 10.9 + 5.64 (H) + 0.0663 (C) - 6.52 (A) 

r^ = 0.950 P-value = 0.005 

Unlike the lEC neutral factions, whole asphalts contain different amounts and different 

kinds of polar functional groups which involve one or more of heteroatoms. At 25°C, 



www.manaraa.com

31 

the association of the polar functional group would be quite extensive and would 

become one of the major factors affecting asphalt iheology. Thus, the amounts of 

heteroatoms present in asphalts should appear in the equation to predict their viscosity. 

An equation for energy of activation of viscous flow (E,), a parameter related to 

temperature dependency of viscosity, has been derived as follows: 

E. = 74.4 + 0.937 (C) + 65.6 (H) - 55.5 (A) - 0.204 (W) 

r^ = 0.996 P-value = 0.001 

This relationship indicates the temperature dependency of asphalt as related to all 

aspects of chemical composition. 

The study also showed aging properties were equally related to the chemical 

composition of asphalt as were viscosities and activation energies for viscous flow as 

discussed above. For high temperature short term aging, a regression equation for the 

aging index, AI^po, is obtained as follows: 

AItpo = -5.13 + 0.323 (C) + 2.43 (A^^oj.) + 9.91 (H) 

r^ = 0.925 P-value = 0.010 

where, AI^po = ratio of viscosities at 60®C after thin film oven aging and 
before aging. 

Airhole = hydrogen to carbon ratio for whole asphalt 
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For asphalts containing large molecules (lager C), effects of aging is greater than for 

asphalts made up of small molecules. An asphalt containing more polar functional 

groups (larger H) will be more easily oxidized and will result in a larger AItpq. More 

aromatic asphalts (lower A^hoie) will be able to dissociate some of the polar groups 

formed during oxidation and this will prevent large increases in viscosity caused by 

aging. 

For low temperature long term aging, as when TFO aging is followed by low 

temperature pressure aging, the aging index, a regression equation for AI^po PAv, k 

obtained as follows: 

AItpo.pav = 82.4 + 1.14 (C) -65.9 (A) + 138 (H) - 10.6 log ^ac 

r^ = 0.940 P-value = 0.035 

In low temperature aging, the mobility of oxidizable sites becomes a factor in 

determining oxidation rate. That would explain why the viscosity of the whole asphalt, 

t1ac> appeared in the regression equation. For the same reason, the sign for aromaticity 

was changed. 

During SHRP [101] it was also found that the amount of the associated fraction 

separated by SEC (SEC fraction I) is related to tan delta (tan 5). Asphalt containing 

more SEC fraction I shows lower tan 5 (higher elasticity). This indicates that an 

asphalt with more associated molecular structure has the ability to recover from 

deformation caused by traffic loads and will perform better in terms of rutting 
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resistance. 

5. Oxidative acini! 

To explain the effects of oxidation and compositional change on theological 

properties of asphalt, Altgelt and Harle [3] used asphalts from three different sources. 

Asphalt A consists of a high concentration of high molecular weight asphaltenes in 

maltenes (solvent phase) of strong solvent power. Asphalt B, with the same penetration 

grade of asphalt A, consists of a low concentration of high molecular weight asphaltenes 

in a less strong solvent phase. Asphalt C has an intermediate concentration of 

asphaltenes of intermediate molecular weight in maltenes of poor solvent power 

containing mainly paraffins. On oxidation, asphalt C hardens most rapidly since the 

asphaltenes become larger in size and even less soluble in that poor solvent phase. 

Asphalt B hardens least because, although the amount of asphaltenes increased on 

oxidation, maltenes are the major fraction controlling the rheology of this asphalt. Hie 

addition of a paraffinic fraction softens asphalts B and C by diluting their maltene 

fractions. However, the dilution effect of the paraffinic solvent in asphalt A is offset to 

some extent by increased agglomeration of the asphaltenes shown by the reduced solvent 

power of the maltenes. For this reason, viscosities of blended asphalts are often widely 

different from the expected or that linearly calculated from the viscosities of the original 

asphalts. 

For a given asphalt, oxidative aging increases the amount of asphaltenes and 

increasing the amount of asphaltenes increases viscosity. Plancher et al. [85] found that 
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this relationship between the amount of asphaltenes and viscosity was widely different 

for asphalts from different sources. For example, with the same asphaltene content, 

asphalt from one source showed 100 times higher viscosity than asphalt from another 

source. This indicates that the asphaltene-viscosity relationship was determined by 

chemical makeup which varied from one asphalt source to another. They also found 

that lime treatment reduced the hardening rate of asphalt and reduced asphaltene 

fonnation. It was believed that the lime removed reactive functionality in the asphalt 

which reduced fomiation of asphaltenes and, therefore, reduced the interaction among 

polar functional groups which caused increased asphalt viscosity. 

Many researchers have devoted their efforts to understand oxidation mechanisms 

in asphalts. Petersen [82] explained the oxidation mechanism of asphalt as the 

formation of ketones as major products via hydroperoxide intermediates. During SHRP 

[101], formation of peroxy free radicals in the bulk asphalt was evidenced by observing 

chemiluminescence emission in the near uv/visible region when asphalts were heated in 

air. It was also found during SHRP [101] that, in all asphalts studied, there were 

significant amounts of free radical inhibitors (mostly phenols) distributed almost equally 

between maltene and asphaltene fractions. Oxidation in asphalt, therefore, is believed to 

be a non-chain process that probably involves radical intermediates at some stage. 

Most sulfur in asphalt exists as sulfide or thiophenic sulfur and only aliphatic sulfide 

sulfur is oxidized during thermal oxidation. The sulfur compounds do not react directly 

with oxygen to form sulfoxide at pavement service temperature but are oxidized by 

intermediates formed by reaction of substances in asphalt with oxygen [101]. 
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Agiiig studies performed during SHRP also show that the aging properties of 

asphalts are a function of the physical state of the asphalt and, therefore, are temperature 

dependent. For this reason, the maximum temperature to which the pavement is 

exposed is an important factor in determining the long term hardening of the asphalt 

pavement [101]. 

The effects of aggregate on asphalt aging were also studied during SHRP [101]. 

For most asphalt, the effects was not very significant. However, asphalt containing 

large amounts of associated fractions or polar species, such as asphaltenes, SEC fraction 

I, or lEC amphoteric fraction, tends to harden slightly less when coated on an aggregate. 

This was explained by asphalt-aggregate interaction which limits the availability of 

oxidation reactive species in asphalt similar to the effects of lime mentioned previously. 

The results from nonaqueous potentiometric titration studies of asphalt indicate 

that aging increases the amounts of total bases in asphalt. The largest increase occurred 

ill the weak bases by formation of ketones and sulfoxides upon aging [101]. 

6. Molecular structuring 

Molecular structuring or steric hardening is a reversible phenomenon which can 

cause significant changes in asphalt rheology with time. This property is different from 

irreversible oxidative hardening and is believed to be the result of molecular 

reorganization within asphalt on a long time scale [101]. The original flow properties 

can almost be restored by mechanical work or heat. In spite of its importance in the 

setting of asphalt in a mix and also in low temperature properties, molecular structuring 
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is not well understood because of its slow process going on days and even years and it 

is destroyed during solvent recovery of aged asphalt in pavement [82]. In asphalt-

aggregate mixes, the aggregate surface can promote molecular structuring by adsorption 

and induced dipole-dipole interactions [24]. It has also been found that the molecular 

structuring has relationships with complex flow and oxidative aging. An asphalt with a 

greater degree of molecular structuring potential exhibits a higher degree of complex 

flow [105]. The degree of molecular structuring of oxidized asphalt is much greater 

than that of unoxidized asphalt. Oxidative hardening and molecular structuring are 

believed to be synergistic [82]. 

Physical hardening of asphalt at low temperature was reported during SHRP 

[18,101]. By storing asphalt at -15°C for 24 hours, a creep master curve was shifted 

about 10"^ seconds. This kind of phenomenon has previously been reported in polymer 

rheology [27]. As the temperature is lowered to near the glass transition temperature, 

there will be a delayed voluminal equilibrium. The lower the temperature, the longer 

the time required to reach that equilibrium. 

C. Durability of Asphalt 

Desirable asphalt pavements should have proper (a) stability, (b) durability, (c) 

flexibility, (d) fatigue resistance, (e) skid resistance, (f) imperviousness, and (g) fracture 

or tensile strength [64]. While the skid resistance is an important property for highway 

safety, lack of one or some of the other characteristics may lead to the pavement failure 

in the form of (a) cracking, (b) disintegration, and/or (c) excessive deformation. Major 
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contributors to pavement deterioration are material properties which include as^ihalt 

durability, shape and gradation of aggregate, aggregate durability, and volumetric 

composition and aggregate-asphalt interaction [28]. Air voids and asphalt film tliickness 

in the mixture are also important variables affecting the performance of asphaltic 

pavement. 

Although asphalt represents only about 5% by weight of the mixture, hardening 

of the asphalt is generally believed as the most important single factor that causes 

cracking and disintegration of pavement [82,106]. Vallerga et al. [106] listed six factors 

causing asphalt hardening as follows: 

1. Oxidation - reaction of oxygen with asphalt, 

2. Volatilization - evaporation of the lighter constituents from asphalt, 

3. Polymerization - combining of like molecules to form larger molecules, 

causing a progressive hardening, 

4. Thixotropy - progressive hardening due to formation of a structure within the 

asphalt over a period of time, 

5. Syneresis - exudation reaction where the thin oily liquids are exuded to the 

surface of the asphalt film, and 

6. Separation - removal of oily constituents, resins, or asphaltenes from the 

asphalt as caused by selective absorption into porous aggregate. 

The effects of light, water, chemical reaction of aq)halt with the aggregate, 

microbiological deterioration, and adsorption of asphalt on the aggregate surface also 

have been suggested as influencing factors in asphalt hardening [104]. 
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As a relative durability measure, the degree and rate of asphalt hardening during 

a laboratory accelerated test have been used since the early 1900s. The durability of 

asphalt is expressed in terms of changes in weight, penetration, ductility, softening point 

and/or viscosity. In some instances the changes in asphalt were measured by physical 

tests on compacted asphalt-aggregate mixtures. The studies using mixtures and 

recovered asphalt have been found to be too complex to be used for routine control 

[110]. 

The test methods that have been developed can be divided into two groups: (a) 

tests on neat asphalts and (b) tests on asphalt-aggregate mixtures. An excellent review 

on the development of the durability tests can be found in the state-of-the-art report by 

Lee [63] and in reference 25. In the 1890s, weight loss and decrease in penetration due 

to oven heating of asphalt (loss on heating) were used to determine the relative 

durability of asphalt. Around 1940, the U. S. Bureau of Public Roads conducted a 

series of investigations on oven heating tests and the thin fUm oven test using a film 

thickness of 1/8 inch was proposed including requirements for percent weight loss, 

retained ductility, and penetration. In the 1950s, it was observed that changes in asphalt 

due to atmospheric exposure were limited to a depth of a few microns from the asphalt 

surface and use of thin asphalt film in the durability test was studied. With the 

development of the microviscometer [37,44,97], so-called microfilm durability tests 

began to be used. In these tests, hardening of 5 to 15 pm of asphalt film due to heat 

and air is measured by change in viscosity. Aging index, the ratio of viscosities before 

and after aging procedures, has been widely used as a durability parameter. For routine 
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control testing puiposes, the rolling thin film oven test (RTFOT) was developed. In the 

RTFOT, 5 to 10 pm of asphalt film is exposed in an oven at 163°C for 75 minutes, a 

relatively short period of time compared with the 2 to 5 hour exposure times of other 

test methods. 

Of the various methods for testing and evaluating the durability of asphalt, only 

the thin-film oven test (TFOT) and the rolling thin-Aim oven test (RTFOT) both run at 

163°C have been adopted as standard methods by AASHTO and ASTM. Both methods 

provide the estimated age hardening due to hot-plant mixing. Long-term asphalt 

durability, for 5 to 10 years or more service in pavement, is usually estimated by severe 

aging procedures having extended exposure time and/or reduced asphalt film thickness. 

However, it has been realized that the hardening during service in pavement at relatively 

lower temperatures and lower rates could have a quite different hardening mechanism 

from that occurs during hot-plant mixing at higher temperatures and higher rates. For 

long-term aging evaluation, pressure oxidation (pressure oxidation bomb, FOB) 

procedures have been used at relatively low temperatures (50-66®C), the extreme 

temperatures encountered in the field [9,23,49,62,64]. Lee [62,64] developed a two-

stage durability test: 1) thin film oven test at 163®C for hot-plant mixing followed by 2) 

pressure oxidization at 65.6°C and 20 atm (2,027 kPa) oxygen pressure for service in 

pavement. 

Chemical properties of asphalt also have been used to evaluate durability of 

asphalt. It is generally agreed that a proper balance of chemical components is 

important for compatibility and for durable asphalt [3,82,89]. To predict the durability 
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of asphalt, Rostler and White [89] proposed a parameter estimating the compatibility of 

asphalt. In this, the balance of the components was indicated by the ratio of the most 

reactive fractions (nitrogen base plus first acidaffin) to the least reactive fractions 

(paraffin plus second acidaffin). The abrasion resistance of sand-asphalt mixture was 

found to decrease as the value of the parameter increased. 

As a measure of durability, Heithaus [42] proposed internal compatibility 

between maltenes and asphaltenes. He found asphalt with more stable internal phase 

hardened more slowly. 

Oxidative aging produces polar functional groups in asphalt and causes more 

extensive intermolecular association or embrittlement of asphalt. This embrittlement of 

asphalt upon oxidation has been considered as one of the major factors causing 

pavement failure. Inverse gas-liquid chromatography (IGLC) was developed by Davis et 

al. [21] to study polar functional groups formed on oxidation and to relate with the 

pavement performance. In this test, asphalt is coated as a thin film on ineit 

fluorocarbon particles and aged in a gas chromatographic (GC) column. Tlien, polar test 

compounds are passed through the GC column using an inert gas carrier at ISO^C. 

Retention times are determined as a measure of the interaction between the test 

compounds and the polar groups formed by oxidation. An asphalt having a greater 

concentration of polar groups interacts more strongly with the test compound 

functionalities, giving larger interaction coefficients (Ip). Studies indicated excellent 

correlations with laboratory durability and pavement performance when phenol was used 

as the test compound with better durability correlating with lower Ip [20]. 
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D. Characteri/fldon of Asphalt by Chemical Methods 

1. liiuh pressure eel permeation chromatography (HP-GPC) 

High pressure gel permeation chromatography (HP-GPC) is a technique by which the 

molecular size distribution of asphalt is determined by means of gels of selected pore 

sizes as in sieve analysis. Reports from a Montana asphalt quality study using this 

technique have shown considerable promise and led the Montana State Department of 

Highways to institute special provisions based on requirements based on HP-GPC 

[50,52,54]. While there were unresolved exceptions, it has been concluded that large 

molecular size asphaltic constituents contribute to low temperature cracking of asphalt 

pavements. Other studies [16,115] have related the amounts of small molecular size 

fractions to rutting and tender mixtures. Garrick and Wood [29] reported correlations 

between asphalt chemical composition by HP-GPC and performance characteristics of 

asplialts and asphalt mixtures. Elder et al. [23] found correlations between pavement 

defonnation and bleeding and asphalts of certain molecular profiles as determined by 

HP-GPC. Goodrich [34] found association between asphalts with wide distribution of 

molecular sizes as determined by HP-GPC, aging, and desirable mix characteristics with 

respect to low-temperature creep (rutting resistance). Researchers have also shown that 

the HP-GPC technique can be used as a reliable test to relate chemical composition and 

aging characteristics of asphalts [8,61,80]. Pribanic et al. [86] reported an improved 

technique in which the wavelength of detection light used is as variable. Using a 

multichannel UV-visible detector, this method makes it possible to obtain GPC 

cluomatograms at eight different wavelengths simultaneously in one run. As wavelength 
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scanning provides information on distribution of aromaticity and the functional groups 

over the molecular size range, this sophistication may prove to be valuable in asphalt 

characterization. Polar and non-polar association of molecules also have been studied 

by this technique [54]. 

2. Thermal analyses 

Thennal analysis techniques have been used extensively by chemists to identify 

and characterize polymers. Breen and Stephen [12] and Schmidt and Santucci [91] 

recommended the use of the glass transition temperature (T,) from thermal analysis data 

for predicting low-temperature cracking of asphalt pavements. 

The glass transition point, which is known to depend to some extent on the 

scanning rate, is identified by a discontinuity in the expansion coefficient versus 

temperature plot or in the specific heat versus temperature plot [73]. In actual practice, 

the fonner discontinuity is reflected in a thermomechanical (TMA) plot, i.e., a plot of 

linear dimension of sample versus temperature, as a rounded break. The latter 

discontinuity manifests itself as an inflection point in a differential scanning calorimetry 

(DSC) plot. Both methods are in use to determine glass transition points. 

The application of DSC to asphalts has also revealed another transformation that 

takes place as they are heated from a low temperature. It is an endothermic 

transformation which may be inteipreted as melting of crystallizable components [79], 

dissolution of these components in the liquid matrix [1], or dissociation of agglomerates 

of asphaltene micelles [67]. The presence of these species in an asphalt is believed to 
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affect its low-temperature performance adversely. The enthalpy change associated with 

these transformations measurable by DSC may measure the amount of these species in 

the sample [1]. Claudy et al. [18] found that the enthalpy change, defined as 

crystallized fraction (CF), is strongly related to the isothermal volume shrinkage and 

isothennal physical hardening. As asphalt contains more CF and have lower T, it 

hardens faster. They also observed the growth of the endothermic peak upon isothermal 

conditioning at -15°C. They believe that the CF is composed of paraffinic species 

capable of foiming microscopic crystalline or amoiphous domains witliin the solvent 

phase of asphalt. 

During SHRP [101], T, was measured by two different ways; one using a 

dynamic mechanical analyzer (DMA) and the other using a home-built 

thennomechanical analyzer (TMA). The values obtained were very close between these 

two different instruments. In the previous discussion, it was shown that the glass 

transition temperature is the sole parameter detennining the shift factor in the 

viscoelastic master curve. The shift factor describes the temperature dependency of 

asphalt. During SHRP [101], it was also found that the activation energy of viscous 

flow, E,(a kind of temperature susceptibility measure), is strongly related to T,. For 

eight asphalts studied during SHRP, it was found that T, is closely related to the 

mobility of asphalt solvent phase expressed by the viscosity of the lEC neutral fraction 

which, in turn, is closely related to its average molecular weight. 

Claudy et al. [18] used the same asphalts used in the SHRP study [101] and 

showed that T, determined by DSC is not consistent with T, measured by DMA and 
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TMA. T, measured by DMA or TMA is always higher by 1®C to 20°C. From a careful 

review of two sets of data for eight asphalts, the following relationship was found; 

T,(DMA) - T,(DSC) = 7.14 + 3.1 CF 

r^ = 0.948 P-value = 0.000 

An interpretation of this relationship might be that DSC detects the glass transition at 

the molecular level at a lower temperature. However, in the bulk asphalt, the rapid 

changes in volume expansion are restricted by the presence of CF. 

3. X-rav diffraction (XRD) 

X-ray diffraction spectra of asphalts have been used for their structural 

characterization in relation to their quality [66,113]. According to Williford [113], the 

height of the shoulder of the spectral curve at low angles is a measure of the quality of 

asphalt. The higher the shoulder the better the asphalt. In an asphalt additive study, 

Lee and Demirel [66] concluded that XRD can be used for studying asphalt structure 

based on low-angle scattering intensities and the shape of amorphous peak. They also 

found a preferred orientation in the horizontal direction with about 4.7 Â spacing in 

asphalts. 
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4. Nuclcar magnelic resonance (NMR) 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool and is used 

in a broad array of disciplines to describe the character of atoms, molecules, and 

assemblies of molecules [102]. 

Hagen et al. [38] characterized asphalt using "C NMR. A large effort has been 

devoted to assignments of NMR peaks which were classified into 17 groups for 

interpretation of data. They found that the amounts of aromatic and aliphatic carbons 

can be quantised and polar functionality also can be quantified by the NMR technique. 

Upon aging, increases in aromaticity and polar functionalities were also observed. Rose 

and Francisco [88] reported a procedure characterizing polar functionalities in heavy 

petroleum fractions by NMR. By a methylation procedure, acidic oxygen, nitrogen, and 

sulfur functional groups can be tagged with an isotopically enriched methyl group. Any 

changes occurring due to this methylation can be detected by NMR. 

During SHRP, an extensive NMR study on asphalt cements was performed at 

Montana State University [102]. From a solution state NMR study, aromaticity, 

concentrations of phenol and carboxylic acids, degree of branching, and length of 

aliphatic chains were estimated. Together with information obtained from elemental 

analysis and VPO molecular weight of a^halts [101], NMR results provided average 

molecular structures for asphalts. These average molecular structures of asphalts are in 

good agreement with the observed Geological properties of the asphalts [101] and the 

viscoelastic theory [27]. A solid state NMR was also used in the SHRP study [102] to 

investigate structure in asphalt on a small distance scale ranging from a few angstroms 
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to 30 nm. Tliis study indicates that the eight asphalts studied differ in molecular 

mobility at any given temperature. Molecular mobility for a given asphalt at any given 

temperature has a wide distribution. This finding supports the idea that the glass 

transition phenomena in asphalts will occur over a broad temperature range. Upon 

aging, the viscosity of asphalt increased 7 to 40 times while proton mobility decreased 

by only a few percent. Mixing of aq)halt and aggregate fines did not change any NMR 

responses. 

E. Current Asphalt Cement Specifications 

In this section, the rationale and weakness of current asphalt specifications are 

reviewed. New asphalt specifications proposed by SHRP are also reviewed. 

I. Rationale of the current specification 

AASHTO specification M 266 grades asphalt cements into six ranges of viscosity 

at 60°C. Suitable asphalts for a given project may be chosen using this specification. 

Higlily viscous asphalts (AC-20 or AC-30), for example, may be used for heavy traffic 

or warm climates and less viscous asphalts (AC-S) for light traffic or cold climates. It 

is believed that the viscosity grading gives a more uniform consistency at temperatures 

above 60°C than penetration grading and a more uniform behavior of a given paving 

mixture during construction where asphalts from different sources are used [109]. 

The way the viscosity of asphalt varies with changing temperature varies among 

asphalts. The viscosity-temperature susceptibility, therefore, is limited to a workable 
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raiige by establishing a minimum viscosity at 13S''C and a maximum consistency 

measured by penetration at 25°C. The temperature, 25"'C, for the penetration test 

together with its simple procedure, enables this test to be run virtually anywhere. The 

minimum viscosity at 135°C can also be used to estimate the theological behavior of 

asphalt during storage and hot mix manufacturing [35]. 

Other tests included in the specification include a minimum solubility in 

trichloroethylene is used to control insolubles (asphalt additives or contaminants) in 

asphalt which may damage equipment [26]. During handling, storage, and construction, 

a minimum flash point becomes important in terms of safety as in preventing a fire 

hazard and for environment concerns. In addition to these tests, a ductility test on thin 

film oven test (TFOT) residue is used to ensure sufficient internal compatibility and 

homogeneity. By setting a minimum limit for ductility, the use of excessively waxy 

crudes and excessive oxidation during production can be limited [35]. 

The overall behavior of asphalt is controlled by the quantitative amount of each 

component and the interaction of these components. A lack of component compatibility 

causes excessive component phase separation and leads to nondurable asphalts. For this 

reason, the spot test has been adopted in the specification; this ensures homogeneity of 

asphalts by checking the stability of asphalt constituents in three different solvents [40]. 

Asphalts in mixes age harden in two manners; first, during hot-mix 

manufacturing and second, during pavement service life at ambient temperature. 

Hardening by hot-mix manufacturing is simulated by TFOT. The maximum rate of 

hardening is set in the specification by the ratio of viscosity at 60®C before and after 
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TFOT [35]. 

Major causes of hardening in asphalt are oxidation and loss of volatiles. Tlie 

loss of volatiles is measured in terms of weight loss during TFOT and the maximum 

limit is set in the specification. Since weight loss is related to the front end of 

distillation as well as the smoke point, undesirable blending of asphalts at refineries may 

be prevented by specifying a weight loss limit on TFO residue [35]. 

2. Weaknesses of the current SDecification 

Recently, although asphalts used met the specification, a number of early 

pavement life problems were reported. A significant number of these problems are 

believed to come from the use of inadequate asphalt cements [26]. 

The weaknesses of the current specification are summarized as follows: 

a) Tlie current specification is not performance based Test methods and 

limiting values used in the current specification had been empirically developed for 

mainly ease and uniformity of construction. Thus it does not guarantee adequate 

perfonnance of the resulting asphalt paving mixture. 

b) Lack of control on long term ace hardening properties Pavement 

failure is more closely related to the properties of asphalt at the time of failure (aged) 

rather than initial properties. TFOT estimates age hardening during mixing at high 

temperature for a short period of time. However, the age hardening mechanism during 

service is believed to be quite different from that during TFOT. The former occurs at 

lower temperatures for a longer period of time. Thus, the age hardening tendency 
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estimated from TFOT could be different from the actual one. For example, blending 

stiff asphalts with very soft asphalts is common in current practice to meet the 

specifications. In the TFOT of these asphalts, a large proportion of the age hardening is 

due to loss of volatiles mainly from the soft asphalt. Consequently, the long term age 

hardening tendency, where slow oxidation is predominant, will be different from TFOT 

result. 

c) Lack of knowledge on low temperature properties Understanding low-

temperature properties of asphalt is critical for understanding thermal cracking of 

pavement. Low temperature (less than -20''C) properties obtained by extrapolation from 

the properties at high temperatures (25, 60, and 135^C in the specification) would not be 

appropriate [35,40]. 

d) Lack of knowledge on chemical properties Chemical properties govern 

physical properties. The fundamental behavior of asphalts is related to their chemical 

composition and their interactions. Significantly different chemical properties for the 

same grade asphalts in the current specification are possible and could result in a 

significant difference in long term performance [26]. 

3. SIIRP asphalt specifications 

SHRP [101] proposed an asphalt cement specification based on consideration of 

four major distress modes in asphalt pavement failure. These failure modes are low-

temperature thennal shrinkage cracking, thermal fatigue, load-associated fatigue 

cracking, and plastic deformation in the upper hot-mix layers that leads to rutting. Five 
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pieces of asphalt testing equipment are used to grade asphalt; the dynamic shear 

rheometer, the bending beam rheometer, the direct tension device, the pressure aging 

vessel, and the Brookfield rheometer. In the q)eciflcation, the asphalt to be used in a 

specific project will be determined by the minimum and maximum pavement 

temperatures expected for the region. For an asphalt to meet a certain grade in the 

specification, the performance related tests must be performed at the temperature 

relevant to the grade and must pass the specified limits. For short-term aging, the 

rolling thin film oven test (RTFOT) is used and a maximum mass loss is specified at 

one percent. For the long-temi aging test, a two-step pressure aging procedure is used 

at varying temperatures depending on the grade or the regional climate. For safety and 

workability controls, flash point and a maximum viscosity at ISS^C are specified, 

respectively. For the viscosity at 135°C, the Brookfîeld rheometer is used. 

Rutting is more prevalent at the upper range of service temperature and right 

after construction. Therefore, rheological properties of asphalt are measured using the 

dynamic shear rheometer at the upper range of the service temperature on the RTFOT 

residue at 10 radian/sec, a frequency closely related to the traffic speed. A tmck tire 

traveling at 50 MPH gives about 0.1 second loading time which corresponds to 10 

radian/sec sinusoidal loading. To control rutting, the loss compliance, J", of the RTFOT 

residue is used. The loss compliance, J", is numerically equal to IG*l/sin6. A wheel 

tracking experiment shows a significant relationship between IG*l/sin6 and rutting 

potential. The minimum IG*l/sinô value is 2.2 kPa at 10 radian/sec. 

Several parameters (creep stiffiiess, slope of the creep curve, and failure strain) 
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are used to control low temperature shrinkage cracking. Since these phenomena are 

prevalent in aged pavement, use of a long-term aged residue in testing is required. 

Creep properties are obtained using the bending beam ifaeometer at low temperatures 

corresponding to the grade or the regional climate. Based on the limiting stiffness 

concept, below which asphalt reaches a critical stiffness value and the pavement cracks, 

the maximum creep stiffiiess is set at 300,000 kPa. For the consideration of time 

dependency of asphalt even at low temperatures, the slope of the creep curve, m = dlog 

J(t)/dlog t, is also required to have a minimum of 0.30. Often, modification of asphalt 

with polymer makes the limiting stiffiiess concept invalid. For this reason, the strain at 

failure at the minimum pavement temperature is specified at a minimum of one percent. 

This failure strain can be used as an alternative to creep stiffness criterion. 

Load-associated fatigue cracking is also prevalent in aged asphalt pavement. 

This distress is controlled by using the dissipated energy concept. Dissipated energy in 

a dynamic shear test can be expressed by IG*lsin 8 = G". In the specification, the 

maximum value of IG*lsin 5 for a long-term aged residue, measured by dynamic shear 

rheometer at average pavement temperature and 10 radian/sec, is 5,000 kPa. 

Control of tenderness of newly constructed pavement is obtained by measuring 

IG* I/sin 6 before and after RTFOT at the upper range of service temperature at 10 

radian/sec using the dynamic shear rtieometer. Asphalts causing tender mixes will not 

pass the minimum requirement after RTFOT of IG*l/sin Ô = 2.2 kPa. 
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III. OBJECTIVES 

Objectives of this study are fourfold: (1) to examine the variability of properties 

of asphalts used in Iowa between suppliers and between times of supply, (2) to evaluate 

the feasibility or applicability of characterizing asphalts by HP-OPC, TA, XRD, and 

NMR, (3) to correlate the measured physicochemical properties of asphalts with field 

performance, and (4) ultimately, to develop locally-based asphalt cement specifications 

for the State of Iowa. 
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IV. METHODS OF STUDY 

This study consists of two phases, a preliminary study and a main study. The 

preliminary study was performed to investigate variability of locally used asphalts and 

applicability of HP-GPC, XRD, and DSC techniques for asphalt characterization and 

specifîcation use. In the main study, asphalt samples were collected from actual 

construction sites and their physicochemical properties were measured and used for 

development of performance-related specifications. 

A. Materials 

In the preliminary study, asphalt cement samples representing those commonly 

used in Iowa were obtained from Koch Asphalt Co., St. Paul, Minnesota and Jebro, Lie., 

Sioux City, Iowa. Two sets of asphalt samples were supplied by each of the two 

suppliers; each set of samples consisted of one AC-5, one AC-10, and one AC-20. The 

two sets of samples from Jebro were received in February, and September, 1987; those 

obtained from Koch were received in June, and October, 1987. A total of 12 virgin 

asphalt cements were used in this preliminary study. They were identified as J0501-0, 

J0502-0, JlOOl-O, J1002-0, J2001-0, J2002-0, K0501-0, K0502-0, KlOOl-0, K1002-

O, K2001-0, and K2002-0. 

In addition, two sets of asphalt samples recovered from pavement cores, taken in 

April, 1987, were provided by the Materials Laboratory, Iowa Department of 

Transportation (DOT). These samples were taken from seven-year old pavements of 

known performance with respect to cracking [71]. They were identified as Sugar Creek 



www.manaraa.com

54 

(surface, binder, and base) and Wood River (surface, binder, and base), respectively. 

For the main study, ten hot mix field pavements were selected by the engineers 

of the Iowa Department of Transportation to represent a range of asphalt source, asphalt 

grade, and type of construction projects in Iowa. The selected projects included four 

AC-5s, two AC-10s, and four AC-20s. The projects consisted of two Interstate projects, 

three primary, and five secondary highways, three of which were placed as surface, two 

as binder, and five as base courses. A summary of these projects is given in Table 1. 

For each project, one gallon of original asphalt cement, 15 to 25 kg of virgin 

aggregates, and 15 to 25 kg of plant mix were collected. In addition, 2 to 3 core 

samples were taken after compaction. These samples were obtained between August, 

and November, 1988. Between September, 1989 and Januaiy, 1990, an additional 8 to 

10 core samples were taken by Iowa DOT engineers at each project. 

B. Procedures 

For the preliminary study, the 12 original asphalts (O samples) were first aged 

following the thin-film oven test procedure (ASTM D 1754) and identified as R samples 

(J0501-R, J0502-R, etc.). The O and R samples were characterized by rheological 

properties, HP-GPC, DSC,and XRD. 

In the main study, for each of the 10 sets of field samples, the following asphalt 

cement samples were derived for characterization by rheological properties, HP-GPC, 

TMA, and NMR: 

• PAO: Virgin or original asphalt. 
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Table 1. Summaiy of field projects 

Project County AC Source & Aggregate Pavement Type 

1 Monona AC-10 KOCH, Algona, lA 
70% 3/4" gravel, 30% crushed gravel 

surface, S' 

2 Story AC-20 KOCH, Tama, lA 
65% 3/4" crushed limestone, 

10% 3/8" chips, 25% sand 

binder, P^ 

3 Dallas AC-20 KOCH, Dubuque, lA 
50% 3/4" crushed gravel, 35% 3/4"quartzite, 

15% concrete sand 

surface, I' 

4 Grundy AC-5 KOCH, Dubuque, lA 
70% 3/4" gravel, 12% 3/4" crushed gravel, 

18% 1/2" crashed limestone 

base, C 

5 Hardin AC-5 KOCH, Dubuque, lA 
70% 3/4" gravel, 30% 3/4" crashed limestone 

base, S 

7 Webster AC-5 KOCH, Algona, lA 
60% 3/4" crashed limestone, 40% 3/4" gravel 

base, S 

8 Plymouth AC-5 KOCH, Algona, lA 
17% 3/4" wash rock, 83% 3/4" pit ran 

base, S 

10 Harrison AC-20 JEBRO, Sioux City, lA 
35% 3/4" quartzite, 14% concrete sand, 

51% 3/4" crashed rock 

surface, P 

11 Harrison AC-10 KOCH, Algona, lA 
30% 3/4" limestone, 30% 3/8" limestone, 

40% scushed gravel 

binder, P 

12 Pottawattamie AC-20 KOCH, Omaha, NE 
50% 3/4" stone, 35% 3/8" stone, 15% sand 

binder, I 

' Secondaiy road 
' Primary road 
' Interstate highway 
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PAR: Thin-film oven test residue following ASTM D 1754. 

PO: Laboratory aged asphalt following pressure-oxidation procedure (20 atm of 

oxygen at 65.6®C for 46 hours) developed by Lee [62,65]. This procedure was 

developed to simulate field in-service aging for five years under Iowa climatic 

conditions. 

POS: Laboratory aged asphalt following pressure-oxidation procedure (20 atm of 

oxygen at 65.6®C for 5 hours). 

PM: Asphalt cement extracted and recovered from plant mix. 

PC: Asphalt cement extracted and recovered from core samples taken right after 

compaction. 

PCI: Asphalt cement extracted and recovered from core samples taken after one year 

of service. 

LM: Asphalt cement recovered from laboratory prepared hot mix following plant job 

mix formula using virgin aggregates and asphalt cement from the project. 

L35: Asphalt cement recovered from laboratory mix, compacted by 35-blow 

Marshall procedure and aged in oven at 60®C for 12 days [33,81]. This 

procedure was developed to simulate in-service asphalt aging in pavement with 

high air voids. 

L75: Asphalt cement recovered from laboratory mix, compacted by 75-blow 

Marshall procedure and aged in oven at 60°C for 12 days [33,81]. This 

procedure was developed to simulate in-service asphalt aging in pavement with 

low air voids. 
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In (lie following discussion, these asphalt sample codes will be preceded by a project 

number identified in Table 1. 

1. Rlieological properties 

Penetration at 5®C (100 g, 5 sec), penetration at 25®C (100 g, 5 sec), penetration 

at 4®C (200 g, 60 sec), viscosity at 25, 60, and 135°C, and ring-and-ball softening point 

tests were performed. From these data, penetration ratio (PR), penetration index (PI), 

pen-vis number (PVN), viscosity temperature susceptibility (VTS), cracking temperature 

(CT), critical stiffness, and critical stiffness temperature were calculated. Based on 

viscosity data at 25''C, shear index (SI, the slope of log viscosity versus log shear rate 

plot) and complex flow (CF) were determined. 

To correlate with low temperature field performance, the dependence of 

viscoelastic properties of selected asphalt samples on their thermal history was studied at 

a low temperature. Newtonian viscosities and elastic shear moduli of these samples 

were detennined at 5°C after cooling from 25°C as well as after warming from a 

quenching temperature of -30®C at a rate of 0.7°C/min. Asphalt samples were 

conditioned for 24 hours at 25°C or 1 hour at -30°C. The reasons for choosing 5°C 

were: 1) It was the lowest temperature at which rheological tests were manageable with 

the equipment on hand. 2) It may reasonably be considered as an intermediate winter 

temperature which prevails after a warm spell or after a severe cold. 3) It is within a 

temperature range in which most asphalts suffer a thermal (endothermic ) transition upon 

heating [1,79]. The instrument used for these measurements was a cone and plate 
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viscometer modified to measure rotational displacements as small as 1/100 degree. Tlie 

Newtonian viscosity and the elastic shear modulus were estimated from the slope and 

the intercept of the linear asymptotic section of the rotation versus time plot. Details of 

the instrumentation, procedure, and theory were described in reference 67. 

2. iiP-GPC 

A high performance gel permeation chromatography system (Waters) was used 

for this study. This system consisted of a solvent reservoir, a dual head high pressure 

pump (Waters 510), an injector (Waters U6K), three 'Ultrastyragel' columns (Waters, 

one 1,000 A followed by two 500 A units), a UV absorbance detector set at 340 nm 

(Waters 481), and a data module (Waters 745). 

Asphalt samples of 0.02 to 0.05 grams were accurately weighed to prepare a 

0.5% (w/v) solution with tetrahydrofuran (THF). Prior to injection, the sample solution 

was centrifuged to remove foreign particles capable of plugging columns. Tlie carrier 

solvent was THF, flow rate was 0.9 ml/min, and sample size was 100 pi. The columns 

were maintained in a constant temperature water bath at 27°C. To establish the 

relationship between molecular weight and retention time, eight standard materials of 

known molecular weight were analyzed using the HP-GPC system described above. 

3. Thermal analyses 

For the differential scanning calorimetry (DSC) measurement, 10 to 20 mg of 

asphalt sample sealed in an aluminium pan was scanned from -80°C to 80°C with a 
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heating rate of S^C/niin using a DuPont 1090 system. The precooling rate was 

ICC/min. 

For the thermomechanical analyses (TMA), a Dupont 943 thermomechanical 

analyzer was used. Dimensions of the asphalt samples used in TMA were 3 mm 

thickness and 5x5 mm square. Samples were quench-cooled to -70°C, conditioned for 

10 minutes, and then heated at a rate of 5°C/min up to 25°C. An expansion probe with 

contact diameter of 2.54 mm was used. 

4. XRD 

All 12 original asphalt samples (O samples) and their TFOT aged residues (R 

samples) used in the preliminary study were subjected to X-ray diffraction analysis by 

6-20 scanning, using a monochromatized CuK^ beam with a 1.54 A wavelength. The 

samples were molded in circular Plexiglas holders exactly flush with their brim. 

In a 6-20 scan, both 6 and 26 vary. Whenever the Bragg equation is satisfied, 

a diffraction peak is obtained. The Bragg equation [2] is 

Xn = 2d sin 6 

where, X = wavelength of X-ray used, 
n = integer (1,2,3 ...), 
d = inteiplaner spacing, and 
6 = angle of incidence. 
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5. NMR 

Four samples were subjected to "C and 'H NMR analyses using a home-built 

solid state NMR spectrometer, situated in the Department of Chemistry, Iowa State 

University, operating at 100 MHz for 'H and 25 MHz for "C. This unit has been 

extensively used for studies of pyrolyzed pitches and coals supplied by Mobil Oil 

Research, the Argonne Coal Bank, and Iowa and German coals. To fingerprint the 

heteroatom functionality by NMR, labeling with a ligand containing phosphorus was 

attempted. 

Solution "C NMR was employed for the two recovered field asphalts [64], two 

project asphalts, and asphaltenes of the two project asphalts. A Bruker WM-200 

operating at 50 MHz for "C was used for this purpose. This unit is a research grade 

multi-nuclear NMR spectrometer for both routine and long-temi experiments. The 

relaxation constant, T,p [32], was measured by 'H NMR using a Bruker MSL-300, a 

high performance dedicated solid-state NMR spectrometer operating at 300 MHz for 'H. 

6. VVater-sensHlvitv of mixes 

Pavement performance of the one-year old core sample against moisture damage 

was evaluated by measuring resilient modulus (RM) and indirect tensile strength (ITS) 

before and after an accelerated Lottman conditioning procedure [69] as follows. A set 

of three randomly selected cores, among the 8 to 10 cores from each project, was 

subjected to RM measurement followed by ITS measurement. Another set of three 

random cores was subjected to RM and ITS measurements after the Lottman 
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conditioning procedure. This procedure consisted of the following steps in order: 1) 30 

minute vacuum saturation at 88 kPa (26 inch Hg) gage vacuum, followed by 2) 30 

minute submerging under water at atmoq)heric pressure, 3) 15 hours sealed in a wet 

atmosphere at -18®C, 4) 24 hours at 60°C water bath, and finally 5) 3 hours at 25®C 

water. RM was measured with a Retsina Mark IV resilient modulus device at 25°C, 

0.33 Hz frequency, and 0.1 second load duration [90]. ITS was measured at 25°C and a 

loading rate two inches per minute [60]. 

7. Aeiim of asphalts 

Age hardening characteristics of asphalt samples was studied in the laboratory by 

use of three different aging procedures; the thin film oven test (TFOT), the Iowa 

durability test (IDT), and asphalt^aggregate mix aging. As mentioned previously, TFOT 

simulates age hardening due to conventional batch mixing [35]. The IDT or pressure-

oxidation procedure, also discussed earlier, consists of two aging stages; TFOT to 

simulate hardening during hot-plant mixing followed by pressure-oxidation under 20 atm 

of oxygen at 65.6°C for oxidative hardening during field pavement service [62,65]. Li 

this study, two different durations of pressure-oxidation, 46 and 5 hours, were used. 

Tlie IDT studies previously performed [62,65] indicated that 5 and 46 hours of IDT on 

asphalt were equivalent to 1-year and 5-year aging, respectively, for in-service pavement 

under Iowa climatic conditions. 

Aging characteristics of asphalts were determined based on a theory that the 

changes in physical properties of asphalt are hyperbolic functions of time and, therefore. 
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approach a definite limit with time. An equation to express the hardening of asphalts in 

the field has been suggested as follows [15]: 

where, AY = change in physical property with time T, 
a,b = constants, and 
1/b = the ultimate change of property at infinite time. 

Constants a and b, and the ultimate change, 1/b, were determined from the measured 

physical property changes after 5 and 46 hours of the IDT. Through use of the above 

equation, physical properties after 10, 20, and 30 years of field service were estimated. 

The hardening of asphalt in a mix is believed to be affected by air void content, 

asphalt film thickness, characteristics of the aggregate, and the durability of asphalt. To 

examine the age hardening of asphalt in a mix, Marshall specimens were prepared by 

use of the same materials and job mix formula used at each project. To simulate asphalt 

aging in pavement of high and low void levels, mixes were compacted by 35 blows per 

side or 75 blows per side. The specimens were then oven-aged at 60®C for 12 days 

which conditions simulate eight years of in-service asphalt aging in pavement [33,81]. 
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V. RESULTS AND DISCUSSIONS 

A. Results of the Preliminary Study 

1. Rheological properties 

Penetrations at S and 2S°C, viscosities at 60 and and softening points of 

the 12 original asphalt (O) samples, as well as their thin film oven test residues (R) are 

given in Table 2. While all 12 samples met AASHTO M226-2 specifications, variations 

between samples and between suppliers within given viscosity grades existed. By far, 

the most uniform results were observed in softening points. 

Temperature susceptibility parameters including the class number (CN), the 

penetration index (PI), the viscosity-temperature susceptibility (VTS), the penetration-

viscosity number between 25°C and 60°C (PVN60), and the penetration-viscosity 

number between 25°C and 135°C (PVN135) are given in Table 3. The results, in 

general, for temperature susceptibility, especially measured by VTS and PVNs, were 

remarkably uniform although a few of the samples showed somewhat higher (e.g., the 

second set of samples from Jebro, J2 samples) or lower (e.g., the first set of samples 

from Koch, K1 samples) values. 

Low-temperature asphalt stiffness has been correlated with pavement cracking 

associated with nonload conditions. The low-temperature behavior of asphalts can be 

evaluated either by estimating the temperature at which asphalt reaches a certain critical 

or limiting stiffness or by comparing the stiffiiess of asphalts at low temperatures and at 

long loading times. Table 4 presents the results of estimated low-temperature cracking 

properties of the 12 asphalts. The properties include cracking temperature (CT), the 
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Table 2. Rheological properties (preliminary study) 

Sample Sp.Gravity P25 P5 VIS60 VIS135 SP 
ID @ 25°C/25°C Pa-s 10"* mVs °C 

J05-01-0 1.024 162 16 65.4 232.8 41.5 
J05-01-R 1.027 98 15 137.0 309.3 48.0 

J05-02-0 1.019 160 15 49.3 213.0 41.5 
J05-02-R 1.032 79 11 152.8 336.7 50.0 

K05-01-0 1.023 193 22 55.6 225.0 40.5 
K05-01-R 1.026 103 13 127.3 334.7 49.0 

K05-02-0 1.023 182 17 48.4 211.8 40.0 
K05-02-R 1.026 95 13 116,0 321.5 48.0 

JlO-Ol-0 1.031 91 11 146.7 329.5 48.0 
JlO-Ol-R 1.034 60 8 264.0 453.9 54.0 

J1002-0 1.019 92 11 109.1 312.1 45.5 
J10-02-R 1.031 59 10 264.0 469.5 53.0 

KlO-Ol-0 1.028 123 15 102.4 307.1 45.5 
KlO-Ol-R 1.030 72 9 254.1 457.4 51.5 

K10-02-0 1.028 102 11 107.9 311.2 46.0 
K10-02-R 1.031 61 10 273.5 461.9 53.5 

J20-01-0 1.028 78 12 244.5 448.7 50.0 
J20-01-R 1.029 57 10 506.3 660.7 56.0 

J20-02-0 1.018 66 8 182.9 450.8 49.5 
J20-02-R 1.029 50 8 392.9 592.8 54.0 

K20-01-0 1.031 75 10 189.3 430.3 49.0 
K20-01-R 1.034 49 8 464.8 618.2 55.5 

K20-02-0 1.031 67 7 201.0 428.3 50.0 
K20-02-R 1.034 43 6 500.1 581.4 55.5 



www.manaraa.com

65 

Table 3. Temperature susceptibility (preliminary study) 

Sample CN PI VTS PVN60 PVN135 
ID 

J05-01-0 5.17 -0.327 3.538 -0.432 -0.510 
J05-01-R 2.44 0.060 3.601 -0.462 -0.639 

J05-02-0 11.00 -0.378 3.497 -0.784 -0.675 
J05-02-R 6.38 -0.036 3.569 -0.689 -0.742 

K05-01-0 5.09 0.028 3.497 -0.306 -0.344 
K05-01-R 4.76 0.510 3.503 -0.459 -0.462 

K05-02-0 8.73 -0.455 3.490 -0.580 -0.526 
K05-02-R 8.30 -0.038 3.498 -0.691 -0.614 

JlO-Ol-O 3.67 -0.171 3.571 -0.509 -0.624 
J10-01-R 4.67 0.206 3.540 -0.552 -0.595 

JIO-02-0 9.98 -0.884 3.504 0.807 -0.694 
J10-02-R 5.75 -0.072 3.515 -0.577 -0.565 

KlO-Ol-0 4.82 0.056 3.483 -0.400 -0.390 
KlO-Ol-R 1.28 0.091 3.522 -0.309 -0.393 

K10-02-0 7.94 -0.414 3.494 -0.654 -0.586 
K10-02-R 3.60 0.132 3.542 -0.492 -0.554 

J20-01-0 -0.01 -0.072 3.524 -0.221 -0.333 
J20-01-R -3.67 0.526 3.499 0.016 -0.125 

J20-02-0 11.75 -0.658 3.411 -0.778 -0.507 
J20-02-R 4.10 -0.247 3.487 -0.433 -0.411 

K20-0I-O 6.84 -0.451 3.453 -0.548 -0.438 
K20-01-R 1.08 0.039 3.514 -0.300 -0.375 

K20-02-0 7.98 -0.488 3.481 -0.660 -0.564 
K20-02-R 1.24 -0.264 3.589 -0.422 -0.586 
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Table 4. Low-temperature cracking properties (preliminary study) 

Sample CT TES S23 S29 
ID "C "C MPa MPa 

J05-01-0 -40.5 -46.5 2.8 8.0 
J05-01-R -45.0 -47.0 9.0 18.0 

J05-02-0 -40.0 -46.5 2.4 11.0 
J05-02-R -40.0 -40.0 12.0 30.0 

K05-01-0 -45.0 -49.5 1.5 5.0 
K05-01-R -42.0 -43.0 7.0 12.0 

K05-02-0 -40.0 -45.0 2.0 5.0 
K05-02-R -43.0 -42.0 7.0 25.0 

JlO-OI-0 -38.0 -40.5 10.0 20.0 
JlO-Ol-R -37.5 -37.0 20.0 30.0 

J10-02-0 -38.5 -34.5 19.0 40.0 
J10-02-R -42.0 -36.0 23.0 50.0 

KlO-Ol-0 -42.5 -44.5 4.0 10.0 
KiO-Ol-R -37.5 -38.5 12.0 40.0 

KIO-02-0 -38.0 -42.0 9.0 21.0 
K10-02-R -41.5 -36.5 14.0 40.0 

J20-01-0 -42.5 -39.0 12.0 24.0 
J20-01-R -42.5 -36.0 15.0 30.0 

J20-02.0 -36.5 -32.5 25.0 70.0 
J20-02-R -39.0 -34.5 30.0 60.0 

K20-01-0 -39.5 -36.0 20.0 50.0 
K20-01-R -39.0 -34.5 30.0 60.0 

K20-02-0 -34.0 -35.0 20.0 50.0 
K20-02-R -35.0 -32.5 50.0 100.0 
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temperature corresponding to an asphalt thermal cracking stress of 500 kPa (72.5 psi) 

based on penetrations at 5°C and 25''C, the temperature of equivalent asphalt stiffness of 

1.38 X 10' kPa (20,000 psi) at 10,000 second loading time (TES), estimated stiffness at -

23°C and 10,(M)0 second loading time (S23), and stiffiiess at -29°C and 20,000 second 

loading time. The following can be observed: 

• Softer asphalts AC-S had lower cracking temperatures and reached a critical stiffness 

of 1.38 X 10' kPa (20,000 psi) at lower temperatures than harder asphalts AC-20. 

• Within a given viscosity grade, cracking temperatures of asphalts can vary by as 

much as 5®C. 

• Low temperature stiffness values for asphalts of a given viscosity grade can differ by 

a factor of 4. 

The effects of heat, as determined by viscosity at 60®C and penetration at 25°C 

on the thin film oven test (TFOT) residues, are given in Table 5. Ratios of viscosities 

after and before TFOT were uniform between 1.8 to 3.1 (all meeting AASHTO M226, 

Table 2, maximum ratio of 5); penetration ratios varied between 0.49 and 0.76. 

Tlie resistance of asphalts to hardening during hot-mixing and their temperature 

susceptibilities are indirectly specified in AASHTO M226, Table 2. These important 

properties are plotted in Figure 3 in terms of PVN60 and viscosity ratio at 60®C. 

Except for the second set of samples from Jebro (J2 samples), asphalts supplied in Iowa 

appeared to be rather uniform in these properties. 

Tlie properties of recovered asphalt samples from 80 month old pavements are 

given in Table 6. The pavements were constructed August, 1980 at Jones County, Iowa. 



www.manaraa.com

68 

Tnhle 5. Tliin film oven test hardening (preliminaiy study) 

Sample 
ID 

Viscosity Ratio 
@ 60°C 

Penetration Ratio 
@ 25^C 

J05-01 2.09 0.60 
J05-02 3.10 0.49 

JlO-01 1.80 0.66 
J10-02 2.42 0.64 

J20-01 2.07 0.73 
J20-02 2.15 0.76 

K05-01 2.29 0.53 
K05-02 2.40 0.52 

K10-01 2.48 0.59 
KlO-02 2.53 0.60 

K20-01 2.45 0.65 
K20-02 2.49 0.64 
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Table 6. Properties of recovered asphalts (preliminary study) 

Sample P25 V1S60 
Pa-s 

PVN60 

80 months after construction 

WOOD RIVER 

Surface 43 480.6 -0.460 
Binder 71 170.1 -0.742 
Base 56 247.1 -0.720 

SUGAR CREEK 

Surface 24 826.8 -0.763 
Binder 35 362.4 -1.010 
Base 26 481.7 -1.137 

45 months after construction (average values)' 

WOOD RIVER 55 291.8 -0.61 

SUGAR CREEK 40 292.4 -1.04 

At time of constmction (average values)' 

WOOD RIVER 100 110.0 -0.6 

SUGAR CREEK 75 90.0 -1.2 

' Data from Marks and Huisman [71] 
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Visual crack surveys performed 3 1/2 years after construction indicated that the Sugar 

Creek asphalt pavement showed an average crack interval of 10.7 m and the Wood 

River asphalt pavement showed an average crack interval of 51.8 m. As shown in Table 

6, the Sugar Creek asphalt had, initially and after 45 months of field service, a higher 

temperature susceptibility with about the same consistency as the Wood River asphalt. 

Based on this information, Marks and Huisman [71] concluded that the temperature 

susceptibility of asphalt was a key factor in understanding the transverse cracking in 

asphalt pavement. However, the physical properties of these asphalts, after 80 months 

of field service and determined during the current study, showed great differences in age 

hardening in these asphalts as measured by penetration at 25*C and viscosity at ÔO^C. 

A comparison of their properties after 45 month of service, showed that while the 

temperature susceptibilities of both aq)halts, measured by PVN60, changed little, the 

average viscosity of the Sugar Creek asphalts increased to about twice that of the Wood 

River asphalts. This suggests that the chemical composition of Sugar Creek asphalts is 

very different from that of the Wood River asphalts. This would result in greatly 

different temperature susceptibility and age hardening characteristics. The effects of 

tliennal history on the rheological properties of these recovered asphalts are discussed 

below. 

The results of viscoelastic measurements at 5®C, after two different thermal 

treatments as described previously, are given in Figures 4 through 7 where viscosity and 

elastic shear modulus are plotted respectively against time of thermal treatment. 

Reviewing these figures, it can be observed that the theological properties of these 
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samples at 5*C exhibit strikingly different dependence on their thermal histoiy and time. 

Some properties do not stabilize even after seven days as shown in Figures 4 through 7. 

The viscoelastic properties shown in Figures 6 an 7 may indicate that both the 

Sugar Creek surface and the Wood River surface asphalts possess enough mobility at 

temperatures between 5*C and 25°(C to remain in a minimum energy state showing 

stabilized viscoelastic responses on different time scales. However, when samples the 

Sugar Creek asphalt were conditioned at -30**C, they exhibited deviated viscoelastic 

responses from the stabilized responses but as time elapsed the properties approached 

the stabilized responses. Samples of the Wood River surface asphalt showed about the 

same viscoelastic responses after thermal treatment at -30°C as they did after 

conditioning at 25*C. This indicates that the mobility of the Sugar Creek surface 

asphalt is quenched at temperatures between -30°C and 5°C and remains in a 

thermodynamically unstable state throughout the experiment. This finding is in 

agreement with the observation made by Claudy et al. [18] of isothermal physical 

hardening. Tliis phenomena is controlled by the glass transition temperature of an 

asphalt as determined by DSC and the amount of crystallizable fraction found in that 

asphalt. 

2. niM;rc 

The Montana State University research group [50-54] divided the HP-GPC 

chromatogram into three slices for further data analyses using two elution cut-off times 

of 22.5 and 30.5 minutes. They labeled the first eluted slice as LMS (large molecular 
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size), the second eluted slice as MMS (medium molecular size), and the third eluted 

slice as SMS (small molecular size). They proposed %LMS as an index for the low-

temperature susceptibility of an asphalt sample. They labeled the four slices as LMS, 

MMSl, MMS2, and SMS, respectively, in the order of elution. A comparative analysis 

of the HP-OPC size distribution curves by Lee and Enustun [67] shows that the 

fractional increase in the largest detectable molecular size region (earliest elution) as a 

results of TFOT, is the largest among the other regions of the LMS fraction defined by 

the Montana research group. Lee and Enustun [67] believed that most of asphaltene 

agglomerates in asphalt will be dissociated during HP-GPC testing and the early-eluted 

fraction is made up by the remnants of undissociated agglomerates. They also believed 

that their observation just mentioned is the results of formation of extra agglomerates 

induced by TFOT. Then, the early-eluted fraction content of a sample is expected to be 

approximately proportional to the original agglomerate concentration, and thus is a more 

sensitive index than LMS defined by the Montana method to characterize aging and 

low-temperature susceptibility. For this reason, Lee and Enustun [67] further divided the 

LMS defined by the Montana research group into two slices using an elution time of 

18.125 minute. Changes in the LMS in Lee and Enustun's procedure, upon aging of 

asphalts, are expected to be more sensitively detected than changes in the slices of the 

Montana procedure. In this preliminary study, Lee and Enustun's coding procedure is 

employed. The percent of LMS plus %MMS1 (LMS+MMSl) in this method is 

identical to %LMS of the Montana slicing method. A typical HP-GPC chromatogram is 

shown in Figure 8 together with Lee and Enustun's slicing method. 
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IIP-GPC nins on 12 virgin asphalts, their TFOT residues, and six recovered core 

samples were performed. The amounts of LMS and LMS+MMSl for these materials 

before and after TFOT aging, except the recovered samples, are tabulated in Table 7. 

The percent changes for the recovered samples are estimated by percent differences of 

HP-GPC results, surface course samples compared to those of the base course samples 

(the surface course samples were age-hardened more severely than the base course 

samples). The results summarized in Table 7 showed the following: 

• The %LMS+MMS1 of the original asphalt studied ranged from 20.6 to 30.9%, all 

higher than the maximum allowable limit of 16-17% for the Montana climates [54]. 

Tlie %LMS for the original and TFOT aged samples ranged from 0.35 to 3.25 and 

showed a good linear relationship with the %LMS+MMS1 (i^ = 0.888). 

• The %LMS+MMS1 of asphalts in a given viscosity grade varied up to 7.4% between 

samples from the same supplier; this difference was as high as 9.6% between samples 

of different suppliers. 

• There was no distinct relationship between viscosity at 60^C and the %LMS+MMS1 

or %LMS. The samples from Koch had relatively higher %LMS+MMS1 but in a 

narrow range, between 27.2 and 30.8. 

• Tliin film oven treatment of all asphalts increased %LMS+MMS1 by an average of 

2.87% (1.2 to 3.8%). The percent change in LMS due to aging was much larger as 

expected. 

• The Wood River asphalts had larger %LMS+MMS1 and %LMS than the Sugar Creek 

asphalts. This might have an important bearing in temperature susceptibility and the 
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Table 7. Results of HP-OPC analyses (preliminary study) 

Sample LMS+MMSl, % change, % LMS, % change, % 

J 0 5 - 0 1 - 0  2 2 . 5  0 . 7 0  
J 0 5 - 0 1 - R  2 6 . 2  + 1 6  1 . 2 8  + 8 3  

J 0 5 - 0 2 - 0  2 0 . 6  0 . 3 5  
J 0 5 - 0 2 - R  2 4 . 0  + 1 6  0 . 6 6  + 8 9  

K 0 5 - 0 1 - 0  3 0 . 2  2 . 2 6  
K 0 5 - 0 1 - R  3 1 . 4  + 4  2 . 4 2  + 7 1  

K 0 5 - 0 2 - 0  2 7 . 2  2 . 1 2  
K 0 5 - 0 2 - R  3 0 . 7  + 1 3  3 . 2 5  + 5 3  

J l O - 0 1 - 0  2 1 . 8  0 . 6 4  
J l O - O l - R  2 4 . 9  + 1 4  1 . 0 6  + 6 6  

J 1 0 - 0 2 - 0  2 4 . 9  0 . 6 4  
J 1 0 - 0 2 - R  2 7 . 4  +  1 0  1 . 0 2  + 5 9  

K l O - O l - 0  3 0 . 8  2 . 2 6  
K l O - O l - R  3 2 . 8  + 7  2 . 7 8  + 2 3  

K 1 0 - 0 2 - 0  2 8 . 3  1 . 7 6  
K 1 0 - 0 2 - R  3 1 . 2  +  1 0  2 . 5 7  + 4 6  

J 2 0 - 0 1 - 0  3 0 . 9  1 . 4 6  
J 2 0 - 0 1 - R  3 3 . 0  + 7  2 . 0 2  + 3 8  

J 2 0 - 0 2 - 0  2 3 . 5  0 . 3 6  
J 2 0 - 0 2 - R  2 7 . 3  +  1 6  0 . 7 4  + 1 0 5  

K 2 0 - 0 1 - 0  2 8 . 8  1 . 8 5  
K 2 0 - 0 1 - R  3 2 . 3  + 1 2  2 . 9 2  + 5 8  

K 2 0 - 0 2 - 0  2 7 . 3  1 . 6 8  
K 2 0 - 0 2 - R  3 0 . 0  +  1 0  2 . 3 7  + 4 1  

S C - B a s e  2 3 . 4  0 . 8 8  
S C - B i n d e r  2 6 . 7  + 1 9  1 . 5 0  +  1 0 2  
S C - S u r f a c e  2 7 . 9  1 . 7 8  

W R - B a s e  2 9 . 5  1 . 6 8  
W R - B i n d e r  3 4 . 9  + 2  3 . 3 4  +  1 3  
W R - S u r f a c e  3 0 . 1  1 . 8 9  
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low-temperature performance of Wood River asphalt. 

During SHRP [101] an SEC study showed that, for a^halts prepared from the 

same crude source using the same production method, increasing viscosity or changing 

grade (for example from AC-10 to AC-20) always increased the amount of SEC fraction 

I corresponding to %LMS+MMS1 or %LMS while the chemical composition determined 

by an elemental analysis and a functional group analysis remains the same. Table 7, 

however, shows that AC-20 asphalts supplied from Jebro at two different times (J1 and 

J2) are very different in %LMS+MMS1 (30.9% and 23.5%). For the samples first 

supplied by Koch (K1 samples), the AC-10 shows a larger %LMS-fMMSl than that of 

the AC-20 (30.8% versus 28.8%). This indicates that there might be a variation in 

asphalt chemical composition for materials obtained from a supplier for different grades 

and at different times. 

Also, as shown in Table 7, aging always increases the %LMS+MMS1 or the 

%LMS. This means that this HP-GPC technique can be used, as concluded previously 

[54,61], as a reliable test to monitor aging. The increase in %LMS or %LMS+MMS1 is 

believed to result from the increased molecular association produced by oxidation. 

3. Thermal analyses 

The results of DSC runs on the 12 virgin asphalts, their TFOT residues, and the 

six recovered core samples are presented in Table 8. A typical DSC thermogram is 

shown in Figure 9. The low temperature inflexion points in the DSC thermograms, as 

interpreted by other researchers [1,79] as glass transition points (T,), are determined 



www.manaraa.com

80 

Table 8. DSC test results (preliminary study) 

S a m p l e  T ,  T ,  T ,  T .  E n t h a l p y  C h a n g e  
«c « C  "C ° C  J / g  

J 0 5 - 0 1 - 0  - 3 1  1 7 . 0  4 7 . 5  3 2 . 0  1 2 . 0  
J 0 5 - 0 1 - R  - 2 9  1 6 . 0  4 8 . 0  3 2 . 0  1 0 . 1  

J 0 5 - 0 2 - 0  - 2 9  1 7 . 0  4 1 . 0  2 9 . 0  1 0 . 3  
J 0 5 - 0 2 - R  - 3 0  1 7 . 0  3 9 . 5  2 8 . 0  1 5 . 0  

K 0 5 - 0 1 - 0  - 2 6  1 7 . 5  5 3 . 0  3 5 . 0  8 . 2  
K 0 5 - 0 1 - R  - 2 6  1 7 . 0  4 7 . 0  3 2 . 0  8 . 8  

K 0 5 - 0 2 - 0  - 3 0  1 6 . 0  4 7 . 0  3 1 . 5  8 . 8  
K 0 5 - 0 2 - R  - 2 9  1 7 . 0  5 3 . 0  3 5 . 0  8 . 4  

J l O - O l - 0  - 3 0  1 6 . 5  4 7 . 5  3 2 . 0  1 1 . 2  
J l O - O l - R  - 3 1  1 6 . 0  4 5 . 0  3 0 . 5  1 3 . 9  

J 1 0 - 0 2 - 0  - 3 2  1 6 . 5  4 8 . 0  3 2 . 0  9 . 3  
J 1 0 - 0 2 - R  - 3 0  1 6 . 5  4 8 . 5  3 2 . 5  1 0 . 5  

K l O - O l - 0  - 3 1  1 7 . 0  4 1 . 0  2 9 . 0  6 . 9  
K l O - O l - R  - 3 0  1 7 . 5  4 8 . 0  3 3 . 0  7 . 5  

K 1 0 - 0 2 - 0  - 2 9  1 7 . 0  4 8 . 0  3 2 . 5  6 . 8  
K 1 0 - 0 2 - R  - 3 0  1 7 . 0  4 6 . 0  3 1 . 5  6 . 7  

J 2 0 - 0 1 - 0  - 3 5  1 6 . 0  4 4 . 5  3 0 . 0  1 1 . 4  
J 2 0 - 0 1 - R  - 3 5  1 7 . 0  4 7 . 5  3 2 . 0  9 . 7  

J 2 0 - 0 2 - 0  - 3 0  1 6 . 5  4 7 . 5  3 2 . 0  9 . 7  
J 2 0 - 0 2 - R  - 2 9  1 6 . 0  5 3 . 0  3 4 . 5  1 0 . 6  

K 2 0 - 0 1 - 0  - 2 5  1 7 . 5  4 7 . 5  3 2 . 5  5 . 7  
K 2 0 - 0 1 - R  - 2 2  1 9 . 5  4 7 . 5  3 3 . 5  4 . 8  

K 2 0 - 0 2 - 0  - 2 6  2 2 . 0  5 0 . 5  3 6 . 0  6 . 0  
K 2 0 - 0 2 - R  - 3 0  2 9 . 5  5 3 . 0  4 1 . 0  7 . 8  

S C - B a s e  - 2 6  1 7 . 0  5 0 . 5  3 4 . 0  9 . 6  
S C - B i n d e r  - 3 1  1 6 . 0  4 4 . 0  3 0 . 0  1 1 . 2  
S C - S u r f a c e  - 3 0  1 6 . 5  4 8 . 0  3 2 . 0  1 0 . 6  

W R - B a a e  - 3 7  1 5 . 0  4 4 . 5  3 0 . 0  1 0 . 8  
W R - B i n d e r  - 3 5  1 4 . 0  4 4 . 0  2 9 . 0  1 3 . 3  
W R - S u r f a c e  - 3 5  1 6 . 0  4 3 . 5  3 0 . 0  1 0 . 7  
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together with two upper temperature transition points, defined here as T„ and T,. Ttie 

mean of T„ and T,, T„, is calculated and is also shown in Table 8. Transition regions, 

analyzed in the manner described by Albert et al. [1] to detemiine the enthalpies of 

transformation (AH), are given in the last colunui of Table 8. 

No relationship between viscosity at 60°C and transition temperatures or enthalpy 

change is observed. The effects of aging on transition temperatures and AH appear to 

be in random directions. However, there is a difference in AH between the asphalts 

from two suppliers. The AH values for the original J samples are on average 24% 

higher than those for the K samples. Claudy et al. [18] interpreted AH as a measure of 

the crystallizable fraction (CP) and found it to be related to isothermal physical 

hardening. For example, at the same low temperature, the asphalt with the lower glass 

transition temperature and the lower amount of CF would be less sensitive to isothermal 

physical hardening. 

Compared with the Sugar Creek asphalts, the Wood River asphalts have about 

the same values for AH but have lower transition temperatures. The lower transition 

temperature of the Wood River asphalts would give a relatively higher mobility at 5®C 

than that of the Sugar Creek asphalts and would also give less sensitivity to the thermal 

treatment discussed previously. 

4. X-rav diffraction 

X-ray diffraction (XRD) spectra were obtained by 6-26 scanning of the original 

asphalt samples and their TFOT residues. An empty sample holder was scanned over 
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tlie saine range to represent background. A typical XRD spectrum is shown in Figure 

10. According to Williford [113] the height of the shoulder of the spectral curve at low 

angles is a measure of the quality of the asphalt. This height above the background at 

26 of 4.83" for various samples and their TFOT residues is tabulated in Table 9. Also 

included are the qualitative changes in the shoulder height and peak height upon TFOT 

for each sample. 

No regular trend exists in these spectra regarding the viscosity grade or supplier, 

nor regarding the effect of aging. In contrast to what is observed in HP-OPC, the XRD 

spectra are affected by TFOT in a quite random fashion and direction. At present, no 

explanation regarding chemical composition and change upon aging is available for 

these observations. 

5. Correlations 

As discussed previously, HP-OPC seems to be a very sensitive characterization 

method for asphalt cements and the changes in them upon aging. DSC can be used in 

characterizing asphalt but this will require a more detailed understanding of the chemical 

composition of asphalt. XRD may not be a suitable technique for use in asphalt 

characterization. In this section, the relationship of HP-OPC properties, characterized by 

the 3-slice and 4-slice methods to rheological properties and DSC parameters will be 

discussed. No relationship was found between HP-OPC and XRD properties. 

Multiple regression analyses were performed between HP-OPC parameters and 

physical/DSC properties and the results are given in Table 10. Overall, the 4-slice 
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Table 9. Shoulder height of X-ray diffraction spectrum (preliminary study) 

Sample Shoulder height change in change in 
counts X 10 shoulder height peak height 

J05-01-0 33 
J05-01-R 37 + 0 

J05-02-0 26 
J05-02-R 40 + + 

KOS-Ol-O 26 
K05-01-R 37 + 

K05-02-0 36 
K()5-02-R 36 o

 

o
 

JIO-Ol-0 43 
JlO-Ol-R 37 -

J1002-0 44 
J10-02-R 32 + 

KlO-Ol-O 34 
KlO-Ol-R 26 + 

K1002-0 25 
K10-02-R 25 0 + 

120-01-0 25 
J20-01-R 41 + 

J20-02-0 48 
J20-02-R 13 -

K20-01-0 36 
K20-01-R 18 + 

K20-02-0 25 
K20-02-R 39 + 

Note: +: increase 0: no change decrease 
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inetliod shows better relationships than the 3-slice method. 

Rheological properties show significant correlations with HP-OPC parameters. 

An interesting observation is that as the temperature at which the rheological properties 

were measured increases, a better relationship is observed, i.e., as temperature changes 

from S^C to 25, 60, and 135*C, the coefficients of determination change from 0.275 to 

0.420, 0.553, and 0.618 respectively using the 4-slice method. Softening points ranged 

from 40 to 56°C for these asphalts and also fall into this relationship. An explanation 

for this observation is, as pointed out during SHRP [101], that as temperature increases 

the degree of intermolecular association decreases within an asphalt. The solvent used 

in this study, tetrahydrofuran (THF), also decreases intermolecular association. 

Therefore, the state of dispersion of an asphalt in THF would be close to that of that 

asphalt at higher temperatures. At lower temperatures, polar aromatic molecules in 

asphalt would be involved in extensive associations and the state of dispersion would be 

greatly different from that in THF. This might be the reason that the HP-GPC 

parameter shows better relationships with high temperature rheology. 

Some temperature susceptibility parameters (CN, PI, and PVN60) and the low-

temperature cracking property (TES) showed weak relationships with HP-GPC 

parameters. Glass transition temperatures and the enthalpy changes measured by DSC 

show statistically significant relationships with HP-GPC parameters. 

From a comparison of for the 3-slice and 4-slice methods, it can be observed 

that, for high temperature Geological properties and DSC properties, the 4-slice method 

showed a significantly better relationship (higher i^). This indicates that high 
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Table 10. Results of regression analyses (preliininaiy study) 

Property 

Rheological properties 

Log (Sp.Gravity) 
Log (P25) 
Log (P5) 
Log (VIS60) 
Log (VIS 135) 
Log (SP) 

Temperature susceptibility 

CN 
PI 
VTS 
PVN60 
PVN135 

Low-temperature cracking properties 

CT 
TES 
Log (S23) 
Log (S29) 

Tliermal properties 

g 
AH 

Coefficient of Determination, r^ (n=24) 

3-slice method 

0.245 0.244 
0.420 * 0.205 
0.275 0.174 
0.553 ** 0.320 • 
0.618 ** 0.357 * 
0.423 * 0.236 

0.418 * 0.349 * 
0.359 0.359 • 
0.109 0.097 
0.441 * 0.398 * 
0,260 0.196 

0.250 0.249 
0.398 * 0.206 
0.370 0.165 
0.276 0.112 

0.451 * 0.313 
0.544 ** 0.415 * 

4-shce method 

* significant at 5% level 
** significant at 1% level 
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temperature rheological properties and DSC properties are related to the %LMS and the 

%LMS+MMS1 (the only difference between 3-slice and 4-slice methods is further 

division of LMS+MMSl into two slices, LMS and MMSl). 

B. Results of the Main Study 

I. Rheological properties 

Penetration and softening point data for the 79 asphalt samples from the ten 

pavement projects are given in Table 11 (numbers preceding the sample identifications 

are project numbers). Viscosity data, including shear index and complex flow at 

are given in Table 12. Shear index or shear susceptibility (the rate of change of 

viscosity with rate of shear) and complex flow (the rate of change of shear stress with 

the rate of shear) have been found to be related to the aging characteristics of asphalts 

and are useful indicators for pavement performance [58,59,65]. Temperature 

susceptibility indices in tenns of PR, PI, PVN, VTS, and CN of the asphalts studied are 

given in Table 13. Reviewing these tables indicates that the ten asphalts supplied in 

Iowa during the 1988 construction season appear to be uniform and well within the 

AASHTO specifications. 

Table 14 presents the results of estimated low-temperature cracking properties of 

the 79 asphalts from the ten projects. The properties include cracking temperature (CT), 

temperature of equivalent asphalt stiffiiess of 1.38 x 10' kPa (20,000 psi) at 10,000 

second loading time (TES), estimated stiffness at -23°C and 10,000 second loading time 

(S23), and stiffness at -29°C and 20,000 second loading time (S29) using van der Poel's 
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Table 11. Rheological properties - I 

Sample P5 P25 P4 SP 
ID °c 

(AC-5s) 
4 P A 0  1 9  1 8 1  6 4  4 1 . 5  
4 P A R  1 4  1 0 0  5 2  4 5 . 5  
4 P C 1  1 1  9 8  3 5  4 4 . 6  
4 P 0 5  1 1  8 6  3 1  4 8 . 8  
4 P 0  1 0  5 2  2 5  5 4 . 0  
4 P M  1 8  1 4 4  5 6  4 3 . 5  
4 P C  1 5  1 0 5  4 5  4 6 . 5  
4 L 3 5  1 5  1 0 5  5 4  5 4 . 0  
4 L 7 5  1 2  5 5  2 9  5 5 . 0  

5 P A 0  1 8  1 9 1  6 8  4 1 . 5  
5 P A R  1 3  1 0 3  4 0  4 8 . 0  
5 P C 1  1 1  8 3  3 3  4 9 . 3  
5 P 0 5  1 4  1 0 5  3 6  4 6 . 2  
5 P 0  1 1  5 3  2 5  5 4 . 0  
5 P M  1 9  1 5 6  6 1  4 5 . 5  
5 L 3 5  1 2  7 7  3 9  5 1 . 0  
5 L 7 5  1 3  8 6  3 7  5 0 . 0  

7 P A 0  1 6  1 9 3  6 0  3 9 . 0  
7  P A R  1 2  9 4  3 8  4 3 . 5  
7 P C 1  1 4  1 0 5  4 1  4 5 . 3  
7 P 0 5  1 1  8 4  3 2  4 9 . 3  
7 P 0  1 0  4 6  2 4  5 6 . 0  
7 L 3 5  1 7  1 0 5  4 4  4 5 . 5  
7 L 7 5  1 4  9 1  3 9  5 0 . 0  

8 P A 0  1 7  1 9 6  5 8  3 8 . 5  
8 P A R  1 3  9 5  3 9  4 6 . 5  
8 P C 1  1 5  1 0 7  4 3  4 4 . 5  
8 P 0 5  1 1  8 3  3 0  5 0 . 2  
8 P 0  1 0  4 6  2 5  5 6 . 0  
8 L 3 5  1 5  8 8  3 6  4 9 . 5  
8 L 7 5  1 4  8 4  4 2  5 0 . 0  

(AC-lOs) 
I P A O  8  8 2  2 9  4 7 . 5  
I P A R  7  5 0  2 1  5 2 . 0  
I P C l  7  5 2  2 1  5 1 . 4  
1 P 0 5  6  4 4  1 6  5 4 . 1  
I P O  6  2 7  1 4  6 1 . 5  
1 P M  1 0  5 5  2 9  5 6 . 0  
1 L 3 5  8  2 7  1 5  6 6 . 5  
1 L 7 5  9  3 2  1 7  6 2 . 5  
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Table 11. continued 

Sample P5 P25 P4 SP 
ID *c 

I I P  A O  1 5  1 3 3  4 4  4 4 . 0  
I I P A R  1 0  6 9  2 9  5 1 . 5  
l l P C l  1 1  9 1  3 6  4 9 . 0  
1 1 P 0 5  8  5 8  2 4  5 3 . 2  
I l P O  7  3 5  2 1  5 9 . 5  
1 1 L 3 5  1 0  6 0  2 7  5 5 . 0  
1 1 L 7 5  1 1  6 5  2 8  5 4 . 0  

(AC- 2 0 S )  
2  P A O  7  5 4  1 5  4 9 . 0  
2 P A R  6  3 8  1 7  5 5 . 5  
2 P C 1  7  4 5  1 9  5 5 . 8  
2 P 0 5  5  3 6  1 4  5 2 . 6  
2 P 0  6  2 5  1 4  6 7 . 0  
2 P M  7  3 5  1 8  5 9 . 0  
2 P C  6  3 0  1 7  6 1 . 0  
2 L M  7  3 9  1 9  6 0 . 5  
2 L 3 5  5  3 1  1 6  6 0 . 5  
2 L 7 5  7  3 5  1 6  5 8 . 5  

3 P A 0  9  7 5  3 0  4 7 . 0  
S P A R  8  4 8  2 2  5 4 . 5  
3 P C 1  1 1  8 9  3 6  4 7 . 2  
3 P 0 5  5  4 1  1 6  5 5 . 8  
3 P 0  6  2 6  1 4  6 3 . 0  
3  P M  9  4 1  2 2  5 8 . 0  
3 P C  9  4 0  2 4  5 8 . 0  
3 L 3 5  7  3 0  1 6  6 6 . 5  
3 L 7 5  6  3 3  1 8  6 1 . 5  

l O P A O  9  8 2  2 9  4 9 . 0  
l O P A R  7  4 7  1 9  5 0 . 5  
l O P C l  6  3 6  1 8  5 9 . 0  
1 0 P 0 5  5  4 0  1 6  5 6 . 5  
l O P O  5  2 4  1 4  6 2 . 5  
1 0 L 3 5  8  3 2  1 9  6 5 . 0  
1 0 L 7 5  1 0  8 1  3 0  4 8 . 5  

1 2 P A 0  8  8 2  2 8  4 7 . 0  
1 2 P A R  6  4 7  2 0  5 3 . 5  
1 2 P C 1  9  6 7  2 7  4 9 . 6  
1 2 P 0 5  5  4 0  1 5  5 6 . 2  
1 2 P 0  4  2 3  1 4  6 3 . 0  
1 2 L 3 5  9  5 4  2 1  5 6 . 0  
1 2 L 5 0  1 0  6 5  2 7  5 3 . 0  
1 2 L 7 5  9  5 1  2 4  5 4 . 0  
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Table 12. Rheological properties - n 

Sample VIS25 VIS60 VIS135 
ID Pa-s SI CF Pa-s 10-* mVs 

(AC-5) 
4 P A 0  1 . 5 0 E + 0 4  0 . 9 8  0 . 0 3 0  5 8 . 3  2 5 0 . 3  
4 P A R  7 . 2 0 E + 0 4  0 . 9 6  0 . 0 2 5  1 5 7 . 4  3 6 8 . 6  
4 P C 1  9 . 0 0 E + 0 4  0 . 9 6  0 . 0 6 5  1 7 3 . 0  3 4 3 . 0  
4 P 0 5  1 . 0 6 E + 0 5  0 . 9 2  0 . 2 0 0  2 0 4 . 9  3 9 4 . 0  
4 P 0  4 . 1 5 E + 0 5  0 . 9 4  0 . 0 8 0  4 6 8 . 2  5 5 3 . 1  
4  P M  2 . 9 0 E + 0 5  0 .  6 0  0 . 3 3 0  8 5 . 6  1 0 9 4 . 6  
4 P C  5 . 6 0 E + 0 4  0 . 9 2  0 . 0 5 0  1 4 1 . 0  3 6 1 . 5  
4 L 3 5  1 . 7 5 E + 0 5  0 . 7 9  0 . 2 2 0  4 4 5 . 7  5 7 3 . 3  
4 L 7 5  3 . 8 0 E + 0 5  0 . 7 9  0 . 2 1 0  6 8 0 . 4  7 0 7 . 2  

5 P A 0  1 . 8 8 E + 0 4  0 . 9 6  0 . 0 4 5  6 3 . 2  2 4 7 . 5  
5 P A R  9 . 0 0 E + 0 4  0 . 9 5  0 . 0 6 0  1 4 7 . 0  3 9 5 . 5  
5 P C 1  1 . 6 0 E + 0 5  0 . 9 1  0 . 1 5 0  2 3 5 . 2  5 4 0 . 0  
5 P 0 5  6 . 5 0 E + 0 4  0 . 9 5  0 . 1 0 0  1 4 5 . 7  3 4 8 . 0  
5 P 0  4 . 7 5 E + 0 5  0 . 8 4  0 . 1 6 0  4 5 0 . 9  5 0 0 . 1  
5 P M  4 . 7 0 E + 0 4  0 . 9 1  0 . 0 6 6  1 3 4 . 1  2 8 5 . 9  
5 L 3 5  1 . 2 1 E + 0 4  0 . 9 0  0 . 1 0 0  2 3 6 . 8  4 4 3 . 9  
5 L 7 5  1 . 2 3 E + 0 5  0 . 8 7  0 . 1 3 0  2 5 2 . 9  4 4 7 . 1  

7  P A O  2 . 5 0 E + 0 4  0 . 9 9  0 . 0 2 7  7 3 . 4  2 5 0 . 8  
7  P A R  7 . l O E + 0 4  0 . 9 8  0 . 0 2 3  1 7 4 . 2  3 9 8 . 5  
7 P C 1  5 . 4 0 E + 0 4  0 . 9 6  0 . 0 6 4  8 4 . 6  3 4 6 . 0  
7 P 0 5  1 . 4 5 E + 0 5  0 . 8 7  0 . 1 0 0  2 3 6 . 5  4 1 4 . 0  
7 P 0  5 . 2 5 E + 0 5  0 . 7 8  0 . 2 3 0  6 3 8 . 3  6 1 8 . 7  
7 L 3 5  4 . 9 0 E + 0 4  0 . 8 9  0 . 0 7 0  1 4 3 . 1  3 8 8 . 9  
7 L 7 5  1 . 4 4 E + 0 5  0 . 8 9  0 . 1 1 0  2 3 2 . 4  4 4 5 . 4  

8 P A 0  1 . 8 6 E + 0 4  1 . 0 0  0 . 0 3 4  6 7 . 0  2 5 3 . 0  
8 P A R  7 . 1 5 E + 0 4  0 . 9 8  0 . 0 1 9  1 8 3 . 2  4 0 4 . 7  
8 P C 1  7 . 0 0 E + 0 4  0 . 9 8  0 . 0 9 6  1 2 7 . 6  3 8 0 . 0  
8 P 0 5  l . l O E + 0 5  0 . 9 3  0 . 0 8 0  2 4 3 . 0  4 2 9 . 0  
8 P 0  4 . 2 0 E + 0 5  0 . 9 0  0 . 1 0 0  5 0 8 . 0  5 5 0 . 4  
8 L 3 5  1 . 4 0 E + 0 5  0 . 8 6  0 . 1 6 0  2 1 6 . 1  4 3 6 . 2  
8 L 7 5  1 . 4 0 E + 0 5  0 . 8 9  0 . 0 9 0  3 4 8 . 4  5 0 0 . 8  

(AC-10) 
I P A O  9 . 1 0 E + 0 4  0 . 9 5  0 . 0 4 5  1 5 7 . 6  3 6 8 . 7  
I P A R  3 . 5 0 E + 0 5  0 . 9 0  0 . 1 0 0  3 7 2 . 2  5 1 5 . 3  
I P C l  3 . 2 0 E + 0 5  0 . 8 5  0 . 1 0 8  4 0 1 . 5  5 8 1 . 0  
1 P 0 5  6 . 5 0 E + 0 5  0 . 8 4  0 . 1 6 0  5 6 0 . 3  5 5 2 . 0  
I P O  1 . 5 5 E + 0 6  0 . 7 4  0 . 2 6 0  1 3 2 1 . 0  7 8 8 . 4  
1 P M  2 . 8 0 E + 0 5  0 . 8 2  0 . 2 0 0  6 2 3 . 5  6 6 4 . 8  
1 L 3 5  1 . 6 7 E + 0 6  0 . 5 7  0 . 4 2 0  5 1 7 6 . 8  1 4 3 1 . 3  
1 L 7 5  1 . 1 2 E + 0 6  0 . 6 5  0 . 3 9 0  3 2 5 3 . 4  1 1 8 5 . 6  
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Table 12. contunued 

Sample VIS25 VIS60 VIS135 
ID Pas SI CF Pa s 10 ® inVs 

H P  A O  3 . 9 5 E + 0 4  0 . 9 6  0 . 0 3 7  1 1 1 . 0  4 4 4 . 4  
I I P A R  1 . 9 0 E + 0 5  0 . 9 2  0 . 0 7 0  3 5 5 . 8  5 5 9 . 0  
l l P C l  1 . 0 9 E + 0 5  0 . 9 3  0 . 0 7 7  2 0 2 . 4  4 5 2 . 0  
1 1 P 0 5  2 . 5 7 E + 0 5  0 . 8 9  0 . 1 4 0  4 6 0 . 2  5 9 2 . 0  
I I P O  9 . 5 0 E + 0 5  0 . 8 2  0 . 1 9 0  1 0 4 2 . 6  7 7 0 . 3  
1 1 L 3 5  3 . 3 0 E + 0 5  0 . 8 3  0 . 1 8 0  4 4 8 . 1  6 3 8 . 5  
1 1 L 7 5  2 . 7 0 E + 0 5  0 . 9 2  0 . 0 9 0  4 2 2 . 0  6 2 5 . 3  

(AC-20) 
2 P A 0  3 . 4 0 E + 0 5  0 . 9 4  0 . 0 6 3  3 5 7 . 1  8 8 9 . 2  
2 P A R  8 . 2 0 E + 0 5  0 . 7 2  0 . 3 2 0  6 3 0 . 6  9 8 6 . 7  
2 P C 1  4 . 3 0 E + 0 5  0 . 7 1  0 . 2 9 0  5 4 9 . 1  8 1 7 . 0  
2 P 0 5  8 . 0 0 E + 0 5  0 . 6 5  0 . 2 9 0  1 0 9 7 . 7  1 0 8 0 . 0  
2 P 0  1 . 9 5 E + 0 6  0 . 5 5  0 . 4 6 0  3 9 7 1 . 6  1 6 5 4 . 7  
2 P M  8 . 3 0 E + 0 5  0 . 6 2  0 . 3 5 0  5 2 3 2 . 9  1 9 7 5 . 4  
2 P C  1 . 2 0 E + 0 6  0 . 3 9  0 . 5 8 0  1 6 9 8 . 6  1 3 8 4 . 5  
2 L M  6 . 5 0 E + 0 5  0 . 5 5  0 . 4 4 0  1 2 3 1 . 5  9 3 4 . 1  
2 L 3 5  1 . 4 0 E + 0 6  0 . 5 8  0 . 4 2 0  5 5 2 0 . 2  1 7 5 7 . 9  
2 L 7 5  1 . 1 5 E + 0 6  0 . 6 6  0 . 3 4 0  1 7 6 5 . 3  1 0 6 3 . 9  

3 P A 0  1 . 1 7 E + 0 5  0 . 9 6  0 . 0 3 0  2 7 3 . 0  4 7 7 . 3  
3 P A R  3 . 6 0 E + 0 5  0 . 9 0  0 . 1 0 0  6 1 0 . 7  7 1 3 . 3  
3 P C 1  1 . 4 5 E + 0 5  0 . 8 8  0 . 1 1 0  2 4 8 . 5  4 9 5 . 0  
3 P 0 5  5 . 7 0 E + 0 5  0 . 8 4  0 . 1 4 0  8 9 4 . 8  8 1 0 . 0  
3 P 0  1 . 9 4 E + 0 6  0 . 7 2  0 . 2 8 0  2 1 4 0 . 8  1 2 0 1 . 6  
3 P M  4 . 6 0 E + 0 5  0 . 8 1  0 . 1 9 0  1 5 8 9 . 1  1 0 8 8 . 2  
3 P C  6 . 7 0 E + 0 5  0 . 7 2  0 . 2 7 0  1 3 3 9 . 8  9 6 4 . 6  
3 L 3 5  1 . 0 5 E + 0 6  0 . 7 4  0 . 2 6 0  1 7 2 1 . 8  1 0 3 9 . 9  
3 L 7 5  1 . 2 5 E + 0 6  0 . 7 2  0 . 2 9 0  2 2 7 5 . 0  1 1 8 3 . 6  

l O P A O  l . O l E + 0 5  0 . 9 7  0 . 0 3 0  2 1 0 . 5  4 5 9 . 8  
l O P A R  3 . 7 5 E + 0 5  0 . 9 3  0 . 0 7 0  6 3 3 . 4  7 3 2 . 7  
l O P C l  7 . 1 0 E + 0 5  0 . 7 8  0 . 2 5 4  1 4 5 5 . 4  1 0 3 0 . 0  
1 0 P 0 5  6 . 0 0 E + 0 5  0 . 9 0  0 . 1 7 0  7  9 7 . 7  7 9 9 . 0  
l O P O  1 . 8 5 E + 0 6  0 . 7 3  0 . 2 7 0  1 8 3 6 . 0  1 0 9 1 . 0  
1 0 L 3 5  1 . 2 0 E + 0 6  0 . 6 9  0 . 3 6 0  3 7 6 5 . 4  1 6 3 0 . 2  
1 0 L 7 5  1 . 5 3 E + 0 5  0 . 9 0  0 . 1 0 0  2 5 0 . 7  4 8 9 . 5  

1 2 P A 0  1 . 0 4 E + 0 5  0 . 9 8  0 . 0 2 3  2 3 3 . 7  4 7 0 . 0  
1 2 P A R  4 . 4 0 E + 0 5  0 . 9 1  0 . 0 8 0  6 5 0 . 3  7 7 4 . 7  
1 2 P C 1  2 . 7 0 E + 0 5  0 . 9 1  0 . 1 3 0  2 5 4 . 4  4 4 0 . 0  
1 2 P 0 5  6 . 5 0 E + 0 5  0 . 9 0  0 . 1 6 0  9 5 4 . 3  8 2 8 . 0  
1 2 P 0  2 . 0 5 E + 0 6  0 . 7 3  0 . 2 6 0  2 2 6 2 . 4  1 1 3 9 . 7  
1 2 L 3 5  5 . 7 0 E + 0 5  0 . 7 9  0 . 2 0 0  7 2 . 2  8 1 9 . 7  
1 2 L 5 0  4 . 0 0 E + 0 5  0 . 8 9  0 . 1 2 0  4 6 1 . 1  7 1 5 . 7  
1 2 L 7 5  4 . 9 0 E + 0 5  0 . 9 0  0 . 1 0 0  5 4 8 . 9  7 1 3 . 3  
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Table 13. Temperature susceptibility 

Sample PR PI CN VTS PVN60 PVN135 

(AC-5) 
4 P A 0  0 . 3 5 4  0 . 1 5 0  7 . 9 6 3  3 . 3 8 1  - 0 . 3 6 7  - 0 . 2 4 3  
4 P A R  0 . 5 2 0  - 0 . 6 3 2  2 . 6 2 8  3 . 4 7 4  - 0 . 2 7 9  - 0 . 3 4 7  
4 P C 1  0 . 3 5 7  - 0 . 9 8 0  - 0 . 7 1 4  3 . 5 7 3  - 0 . 2 1 0  - 0 . 4 8 1  
4 P 0 5  0 . 3 6 0  - 0 . 1 1 4  0 . 5 5 2  3 . 5 2 6  - 0 . 2 4 7  - 0 . 4 1 8  
4 P 0  0 . 4 8 1  - 0 . 1 5 3  - 2 . 2 0 8  3 . 5 7 6  - 0 . 2 0 3  - 0 . 4 6 6  
4 P M  0 . 3 8 9  - 0 . 0 4 2  2 7 . 5 4 6  2 . 3 8 4  - 0 . 3 2 9  1 . 9 0 7  
4 P C  0 . 4 2 9  - 0 . 1 6 6  3 . 9 8 1  3 . 4 4 5  - 0 . 3 1 6  - 0 . 3 2 0  
4 L 3 5  0 . 5 1 4  1 . 9 0 3  - 1 5 . 2 4 1  3 . 5 3 0  0 . 9 3 7  0 . 3 9 6  
4 L 7 5  0 . 5 2 7  0 . 2 1 2  - 8 . 1 8 5  3 . 5 2 7  0 . 2 5 2  - 0 . 0 7 0  

5 P A 0  0 . 3 5 6  0 . 4 0 0  4 . 6 3 6  3 . 4 2 7  - 0 . 1 7 1  - 0 . 1 9 0  
5 P A R  0 . 3 8 8  0 . 2 2 1  5 . 0 3 7  3 . 3 8 7  - 0 . 3 0 3  - 0 . 2 0 4  
5 P C 1  0 . 3 9 8  - 0 . 0 9 5  3 . 8 4 4  3 . 3 2 8  - 0 . 1 6 0  0 . 0 1 1  
5 P 0 5  0 . 3 4 3  - 0 . 2 7 4  2 . 4 2 2  3 . 4 9 0  - 0 . 2 8 0  - 0 . 3 7 9  
5 P 0  0 . 4 7 2  - 0 . 1 0 6  - 3 . 7 8 0  3 . 6 4 1  - 0 . 2 1 1  - 0 . 5 8 5  
5 P M  0 . 3 9 1  0 . 9 8 3  - 7 . 1 5 8  3 . 6 2 4  0 . 3 3 6  - 0 . 2 1 1  
5 L 3 5  0 . 5 0 6  0 . 1 5 3  1 . 6 9 7  3 . 4 8 7  - 0 . 2 7 5  - 0 . 3 6 4  
5 L 7 5  0 . 4 3 0  0 . 2 1 4  - 2 . 3 4 0  3 . 5 0 7  - 0 . 0 2 5  - 0 . 2 2 9  

7  P A O  0 . 3 1 1  - 0 . 6 4 0  0 . 9 8 0  3 . 4 8 1  0 . 0 3 0  - 0 . 1 5 3  
7 P A R  0 . 4 0 4  - 1 . 4 6 1  2 . 9 1 2  3 . 4 5 1  - 0 . 2 7 3  - 0 . 3 0 0  
7 P C 1  0 . 3 9 0  - 0 . 5 5 8  1 6 . 6 0 7  3 . 2 6 5  - 0 . 8 7 2  - 0 . 3 8 8  
7 P 0 5  0 . 3 8 1  - 0 . 0 4 6  - 1 . 6 1 1  3 . 5 4 3  - 0 . 1 3 4  - 0 . 3 7 0  
7 P 0  0 . 5 2 2  - 0 . 0 0 1  - 4 . 9 9 5  3 . 6 0 5  - 0 . 0 8 9  - 0 . 4 3 8  
7 L 3 5  0 . 4 1 9  - 0 . 4 7 8  4 . 9 7 5  3 . 3 9 0  - 0 . 3 0 0  - 0 . 2 0 7  
7 L 7 5  0 . 4 2 9  0 . 3 8 8  - 1 . 5 3 8  3 . 4 7 7  - 0 . 0 1 9  - 0 . 1 6 9  

8 P A 0  0 . 2 9 6  - 0 . 8 0 3  3 . 0 7 3  3 . 4 3 3  - 0 . 0 5 1  - 0 . 1 1 6  
8 P A R  0 . 4 1 1  - 0 . 4 8 2  1 . 6 8 4  3 . 4 5 9  - 0 . 2 0 1  - 0 . 2 6 4  
8 P C 1  0 . 4 0 2  - 0 . 7 4 1  7 . 0 5 4  3 . 3 6 2  - 0 . 3 9 3  - 0 . 2 2 0  
8 P 0 5  0 . 3 6 1  0 . 1 6 2  - 1 . 3 4 2  3 . 5 2 5  - 0 . 1 2 6  - 0 . 3 3 0  
8 P 0  0 . 5 4 3  - 0 . 0 0 1  - 1 . 3 9 0  3 . 6 1 1  - 0 . 3 0 8  - 0 . 5 9 4  
8 L 3 5  0 . 4 0 9  0 . 1 4 8  0 . 6 3 6  3 . 4 6 4  - 0 . 1 5 3  - 0 . 2 3 9  
8 L 7 5  0 . 5 0 0  0 . 1 4 4  - 7 . 5 8 4  3 . 5 4 2  0 . 2 7 3  - 0 . 0 8 7  

(AC-10) 
I P A O  0 . 3 5 4  - 0 . 6 2 0  7 . 2 2 1  3 . 4 7 4  - 0 . 5 9 9  - 0 . 5 6 9  
I P A R  0 . 4 2 0  - 0 . 7 1 1  3 . 4 6 7  3 . 5 4 4  - 0 . 4 8 5  - 0 . 6 0 2  
I P C l  0 . 4 0 4  - 0 . 7 6 4  2 . 8 8 9  3 . 4 8 0  - 0 . 3 5 3  - 0 . 3 9 9  
1 P 0 5  0 . 3 6 4  - 0 . 5 1 9  - 2 . 8 2 7  3 . 6 4 5  - 0 . 2 8 0  - 0 . 6 3 3  
I P O  0 . 5 1 9  - 0 . 0 5 3  - 5 . 2 5 5  3 . 6 8 4  - 0 . 1 8 9  - 0 . 6 2 6  
1 P M  0 . 5 2 7  0 . 4 3 4  - 7 . 2 1 1  3 . 5 4 2  0 . 1 6 6  - 0 . 1 5 5  
1 L 3 5  0 . 5 5 6  0 . 8 1 8  - 2 8 . 1 3 8  3 . 7 1 8  1 . 0 2 9  0 . 1 0 8  
1 L 7 5  0 . 5 3 1  0 . 4 7 6  " 2 4 . 3 3 8  3 . 6 9 7  0 . 8 7 5  0 . 0 4 4  



www.manaraa.com

94 

Table 13. continued 

Sample PR PI CN VTS PVN60 PVN135 

I I P A O  
I I P A R  
l l P C l  
1 1 P 0 5  
I l P O  
1 1 L 3 5  
1 1 L 7 5  

(AC-20) 
2  P A O  
2 P A R  
2 P C 1  
2 P 0 5  
2 P 0  
2  P M  
2 P C  
2 L M  
2 L 3 5  
2 L 7 5  

3 P A 0  
3  P A R  
3 P C 1  
3 P 0 5  
3 P 0  
3 P M  
3 P C  
3 L 3 5  
3 L 7 5  

l O P A O  
l O P A R  
lOPCl 
1 0 P 0 5  
l O P O  
1 0 L 3 5  
1 0 L 7 5  

12PA0 
1 2 P A R  
1 2 P C 1  
1 2 P 0 5  
1 2 P 0  
1 2 L 3 5  
1 2 L 5 0  
1 2 L 7 5  

0 . 3 3 1  
0 . 4 2 0  
0 . 3 9 6  
0 . 4 1 4  
0 . 6 0 0  
0 . 4 5 0  
0 . 4 3 1  

0 . 2 7 8  
0 . 4 4 7  
0 . 4 2 2  
0 . 3 8 9  
0 . 5 6 0  
0 . 5 1 4  
0 . 5 6 7  
0 . 4 8 7  
0 . 5 1 6  
0 . 4 5 7  

0 . 4 0 0  
0 . 4 5 8  
0 . 4 0 4  
0 . 3 9 0  
0 . 5 3 8  
0 . 5 3 7  
0 .  6 0 0  
0 . 5 3 3  
0 . 5 4 5  

0 . 3 5 4  
0 . 4 0 4  
0 . 5 0 0  
0 . 4 0 0  
0 . 5 8 3  
0 . 5 9 4  
0 . 3 7 0  

0 . 3 4 1  
0 . 4 2 6  
0 . 4 0 3  
0 . 3 7 5  
0 . 6 0 9  
0 . 3 8 9  
0 . 4 1 5  
0 . 4 7 1  

- 0 . 1 6 5  
- 0 . 0 2 6  

0 . 1 1 3  
- 0 . 0 8 0  

0 . 1 0 3  
0 . 4 3 6  
0 . 4 1 9  

- 1 . 2 7 6  
- 0 . 5 3 4  
- 0 . 0 9 5  
- 1 . 2 7 8  

0 . 7 4 6  
0 . 0 0 5  
0 . 0 6 6  
0 . 5 3 4  
0 . 0 3 9  

- 0 . 0 9 3  

- 1 . 0 0 8  
- 0 . 2 3 0  
- 0 . 4 8 4  
- 0 . 3 1 6  

0 . 1 4 2  
0 . 1 5 3  
0 . 0 9 7  
1 . 0 3 8  
0 . 3 5 7  

- 0 . 1 9 9  
-1.211 

0 . 0 6 6  
- 0 . 2 2 2  
-0.100 

0 . 9 2 0  
- 0 . 3 7 2  

- 0 . 7 6 4  
- 0 . 5 0 5  
- 0 . 5 9 2  
- 0 . 2 8 6  
- 0 . 0 9 2  

0 . 3 8 8  
0 . 1 8 1  

- 0 . 2 0 0  

8 . 5 0 4  
-1.686 
2.210 

- 3 . 0 3 6  
- 6 . 3 8 3  
- 1 . 6 7 6  
- 2 . 4 5 3  

1 3 . 3 9 3  
1 0 . 2 3 5  

5 . 2 9 2  
- 1 . 3 9 5  

- 1 6 . 4 9 7  
- 2 7 . 4 4 3  

- 2 . 8 1 5  
- 9 . 4 5 4  

- 2 8 . 4 2 7  
- 1 3 . 3 3 6  

0 . 0 6 7  
- 1 . 9 7 4  
- 0 . 7 4 5  
- 5 . 3 6 0  
- 8 . 0 3 0  

- 1 4 . 0 0 2  
- 1 1 . 5 6 4  

- 9 . 2 3 5  
- 1 6 . 1 5 4  

3 . 9 3 9  
- 1 . 8 5 0  
- 9 . 7 5 0  
- 1 . 9 6 7  
- 3 . 5 8 6  

- 2 1 . 4 4 9  
0 . 9 4 6  

1 . 6 7 6  
- 1 . 4 1 5  

2 . 9 7 9  
- 5 . 9 6 1  
- 7 . 2 1 5  
5 8 . 9 0 5  
- 2 . 1 1 6  
- 0 . 7 2 4  

3 . 1 7 5  
3 . 4 6 3  
3 . 4 0 9  
3 . 5 1 7  
3 . 6 1 8  
3 . 4 4 9  
3 . 4 4 2  

3 . 1 1 6  
3 . 2 5 5  
3 . 3 4 1  
3 . 3 9 2  
3 . 5 3 5  
3 . 5 0 7  
3 . 3 7 2  
3 . 5 3 6  
3 . 6 0 1  
3 . 5 6 8  

3 . 4 8 5  
3 . 4 8 1  
3 . 4 1 9  
3 . 5 2 6  
3 . 5 4 8  
3 . 5 1 6  
3 . 5 4 2  
3 . 5 7 5  
3 . 5 7 9  

3 . 4 1 1  
3 . 4 7 4  
3 . 5 2 4  
3 . 4 9 4  
3 . 5 6 3  
3 . 5 2 8  
3 . 4 3 1  

3 . 4 3 6  
3 . 4 4 3  
3 . 5 2 2  
3 . 5 3 3  
3 . 6 0 3  
2 . 5 1 8  
3 . 3 7 3  
3 . 4 4 1  

- 0 . 1 7 4  
- 0 . 0 3 3  
—0.166  
- 0 . 0 5 1  
- 0 . 0 3 4  
- 0 . 0 2 4  

0 . 0 4 4  

- 0 . 4 1 1  
- 0 . 3 8 2  
- 0 . 2 6 6  

0 . 0 5 6  
0 . 6 7 6  
1 . 4 5 7  
0 . 1 8 7  
0 . 2 8 3  
1 . 3 0 6  
0 . 4 5 3  

- 0 . 1 7 0  
- 0 . 0 6 7  

0 . 0 1 4  
0 . 0 5 9  
0 . 1 8 7  
0 . 6 0 1  
0 . 4 0 2  
0 . 1 9 9  
0 . 5 9 6  

- 0 . 2 9 6  
- 0 . 0 6 4  

0 . 3 1 7  
— 0 . 0 8 6  
- 0 . 0 6 2  
1 . 0 0 9  

- 0 . 1 3 3  

- 0 . 1 8 6  
- 0 . 0 3 8  
- 0 . 4 2 1  

0 . 0 8 2  
0 . 0 6 2  

- 1 . 9 8 1  
0 . 1 3 3  

- 0 . 0 7 7  

0 . 3 0 7  
- 0 . 1 5 1  
- 0 . 1 4 6  
- 0 . 2 5 9  
- 0 . 4 1 7  
- 0 . 1 1 7  
- 0 . 0 5 7  

0 . 2 2 6  
- 0 . 0 1 6  
- 0 . 0 8 8  

0 . 0 4 5  
0 . 2 0 9  
0 . 7 9 0  
0 . 1 7 3  

— 0 . 0 6 0  
0 . 5 0 7  

- 0 . 0 0 3  

- 0 . 2 8 7  
- 0 . 2 0 3  
- 0 . 0 3 6  
- 0 . 1 9 6  
- 0 . 1 4 4  

0 . 1 9 3  
0 . 0 0 8  

- 0 . 1 8 5  
0 . 0 7 3  

- 0 . 2 4 1  
- 0 . 1 8 9  
- 0 . 0 1 6  
- 0 . 2 3 8  
- 0 . 3 3 6  

0 . 4 4 6  
- 0 . 1 6 3  

- 0 . 2 0 9  
- 0 . 1 1 4  
- 0 . 5 2 6  
- 0 . 1 9 2  
- 0 . 3 2 2  

0 . 1 1 4  
0 . 1 3 4  

- 0 . 1 3 9  
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Table 14. Low-temperature cracking properties 

Sample CT TES S23 S29 
ID "C »C MPa MPa 

(AC-5) 
4 P A 0  - 4 3 . 5  - 4 9 . 0  1 . 3  3 . 5  
4 P A R  - 4 4 . 0  - 3 8 . 0  1 2 . 0  2 5 . 0  
4 P C 1  - 3 8 . 0  - 3 5 . 4  1 4 . 0  3 4 . 0  
4 P 0 5  - 3 9 . 0  - 3 9 . 2  1 1 . 0  2 2 . 0  
4 P 0  - 4 3 . 0  - 3 3 . 5  3 0 . 0  6 5 . 0  
4 P M  - 4 7 . 0  - 4 4 . 5  2 . 7  6 . 0  
4 P C  - 4 4 . 0  - 4 0 . 5  7 . 5  1 5 . 0  
4 L 3 5  - 4 8 . 0  - 5 5 . 0  2 . 5  4 . 0  
4 L 7 5  - 4 6 . 0  - 3 6 . 0  2 0 . 0  3 7 . 5  

5 P A 0  - 4 2 . 5  - 5 1 . 5  0 . 7  2 . 5  
S P A R  - 4 1 . 5  - 4 3 . 0  6 . 5  1 2 . 5  
5 P C 1  - 3 9 . 5  - 3 8 . 8  1 2 . 0  2 2 . 0  
5 P 0 5  - 4 3 . 0  - 3 9 . 9  8 . 0  1 6 . 0  
5 P 0  - 4 4 . 0  - 3 3 . 5  2 8 . 0  5 5 . 0  
5 P M  — 4 5 . 0  - 5 4 . 5  1 . 7  2 . 5  
5 L 3 5  - 4 1 . 0  - 3 9 . 5  1 0 . 0  2 0 . 0  
5 L 7 5  - 4 3 . 5  - 4 1 . 0  7 . 5  1 6 . 0  

7 P A 0  - 3 9 . 0  - 4 4 . 0  1 . 5  5 . 0  
7 P A R  - 3 9 . 0  - 3 2 . 0  2 5 . 0  6 0 . 0  
7 P C 1  - 4 3 . 0  - 3 8 . 8  1 0 . 0  2 0 . 0  
7 P 0 5  - 3 9 . 5  - 3 9 . 7  9 . 0  2 0 . 0  
7 P 0  — 4 5 . 0  - 3 2 . 5  3 5 . 0  7 0 . 0  
7 L 3 5  - 4 5 . 5  - 3 9 . 0  9 . 0  2 0 . 0  
7 L 7 5  - 4 1 . 5  - 4 3 . 0  7 . 5  1 3 . 0  

8 P A 0  - 4 0 . 0  - 4 3 . 5  2 . 5  8 . 0  
8 P A R  - 4 2 . 5  - 3 8 . 0  8 . 0  2 0 . 0  
8 P C 1  - 4 4 . 0  - 3 7 . 5  1 0 . 0  2 3 . 0  
8 P 0 5  - 3 9 . 5  - 3 9 . 8  7 . 5  1 7 . 0  
8 P 0  - 4 5 . 0  - 3 2 . 5  3 3 . 0  6 0 . 0  
8 L 3 5  - 4 6 . 5  - 4 0 . 5  7 . 5  1 6 . 0  
8 L 7 5  - 4 6 . 5  - 4 0 . 0  8 . 0  1 8 . 0  

(AC-10) 
I P A O  - 3 5 . 0  - 3 6 . 0  1 8 . 0  4 0 . 0  
I P A R  - 3 6 . 0  - 3 0 . 5  4 2 . 0  8 5 . 0  
I P C l  - 3 6 . 3  - 2 9 . 1  3 5 . 0  8 0 . 0  
1 P 0 5  - 3 5 . 0  - 2 8 . 9  5 0 . 0  9 5 . 0  
I P O  - 4 0 . 0  - 2 6 . 0  9 0 . 0  1 5 0 . 0  
1 P M  - 4 2 . 5  - 3 7 . 0  2 0 . 0  4 0 . 0  
1 L 3 5  - 4 7 . 5  - 4 9 . 5  5 0 . 0  8 5 . 0  
1 L 7 5  - 4 7 . 5  - 4 8 . 5  5 0 . 0  8 0 . 0  
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Table 14. continued 

Sample CT TES S23 529 
°C °C MPa MPa 

I I P A O  - 4 2 . 5  - 4 3 . 0  3 . 5  1 0 . 0  
I I P A R  - 4 0 . 0  - 3 7 . 0  1 5 . 0  3 0 . 0  
l l P C l  - 3 8 . 5  - 4 1 . 0  9 . 0  1 9 . 0  
1 1 P 0 5  - 3 7 . 5  - 3 4 . 9  2 2 . 0  4 6 . 0  
I l P O  - 4 0 . 0  - 2 9 . 5  4 5 . 0  9 0 . 0  
1 1 L 3 5  - 4 1 . 5  - 3 8 . 0  1 6 . 0  3 5 . 0  
1 1 L 7 5  - 4 2 . 5  - 3 9 . 0  1 5 . 0  2 7 . 0  

(AC-20) 
2  P A O  - 3 6 . 0  - 2 8 . 0  7 5 . 0  1 7 0 . 0  
2  P A R  - 3 5 . 5  - 2 8 . 5  7 5 . 0  1 5 0 . 0  
2 P C 1  - 3 7 . 5  - 3 2 . 2  4 0 . 0  7 5 . 0  
2 P 0 5  - 3 3 . 0  - 2 4 . 4  1 3 0 . 0  3 4 9 . 9  
2 P 0  - 4 0 . 0  - 3 0 . 0  6 0 . 0  1 0 0 . 0  
2  P M  - 4 0 . 0  - 2 9 . 5  5 0 . 0  1 0 0 . 0  
2 P C  - 3 7 . 5  - 2 8 . 0  6 5 . 0  1 5 0 . 0  
2 L M  - 3 8 . 5  - 3 4 . 0  3 5 . 0  6 0 . 0  
2 L 3 5  - 3 4 . 0  - 2 8 . 5  7 0 . 0  1 3 0 . 0  
2 L 7 5  - 4 0 . 0  - 3 1 . 0  6 0 . 0  1 0 0 . 0  

3  P A O  - 3 7 . 5  - 3 3 . 0  3 0 . 0  6 5 . 0  
3  P A R  - 3 9 . 0  - 3 2 . 0  3 5 . 0  7 5 . 0  
3 P C 1  - 3 9 . 0  - 3 6 . 9  1 0 . 0  2 7 . 0  
3 P 0 5  - 3 2 . 5  - 2 9 . 3  5 0 . 0  1 0 0 . 0  
3 P 0  - 4 0 . 0  - 2 7 . 0  8 0 . 0  1 4 0 . 0  
3  P M  - 4 4 . 0  - 3 2 . 0  3 5 . 0  7 0 . 0  
3 P C  - 4 4 . 0  - 3 1 . 5  3 7 . 0  7 2 . 0  
3 L 3 5  - 4 2 . 5  - 3 4 . 0  4 0 . 0  7 5 . 0  
3 L 7 5  - 3 7 . 0  - 3 1 . 0  5 0 . 0  9 0 . 0  

l O P A O  - 3 7 . 0  - 3 8 . 0  1 2 . 0  2 6 . 0  
l O P A R  - 3 7 . 0  - 2 7 . 5  6 5 . 0  1 5 0 . 0  
l O P C l  - 3 6 . 3  - 3 0 . 5  4 7 . 0  8 5 . 0  
1 0 P 0 5  - 3 2 . 5  - 2 9 . 6  5 0 . 0  9 5 . 0  
l O P O  - 3 6 . 5  - 2 5 . 0  1 0 0 . 0  1 7 0 . 0  
1 0 L 3 5  - 4 5 . 0  - 3 4 . 0  3 6 . 0  6 0 . 0  
1 0 L 7 5  - 3 8 . 5  - 3 7 . 0  1 6 . 0  3 7 . 0  

1 2 P A 0  - 3 5 . 0  - 3 5 . 0  2 0 . 0  3 8 . 0  
1 2 P A R  - 3 4 . 0  - 3 1 . 0  3 8 . 0  7 5 . 0  
1 2 P C 1  - 3 8 . 5  - 3 3 . 4  2 5 . 0  6 0 . 0  
1 2 P 0 5  - 3 2 . 5  - 2 8 . 9  5 0 . 0  9 5 . 0  
1 2 P 0  - 3 2 . 5  - 2 4 . 5  1 1 0 . 0  1 7 0 . 0  
1 2 L 3 5  - 4 2 . 5  - 3 7 . 0  2 0 . 0  3 8 . 0  
1 2 L 5 0  - 4 1 . 0  - 3 7 . 5  1 5 . 0  3 0 . 0  
1 2 L 7 5  - 4 1 . 5  - 3 3 . 0  3 0 . 0  5 5 . 0  
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procedure. 

2. IIP-GFC 

The asphalt samples related to ten field samples were also analyzed by HP-OPC. 

For data analysis, the 3-slice and the 4-slice methods are used as discussed earlier. In 

addition, 8-slice method is also used as practiced by Oarrick and Wood [29]. In the 8-

slice method, the cut-off times used were 19.875, 21.875, 23.875, 25.375, 26.875, 

28.875, and 30.875 minutes. The cut-off times were empirically determined to give 

about the same percent area for each slice and about the same time intervals. The eight 

slices were labeled as XI, X2,... , and X8 in the same order with their elutions, i.e., the 

slice XI is for the first eluted materials and so on. The 3-slice and the 4-slice data are 

presented in Table 15. The 8-slice data are given in Table 16. Table 17 presents 

average molecular weight and polydisperse index which were calculated by the data 

module based on relationship between elution time and molecular weight of reference 

materials of known molecular weights. Percent changes of 3-, 4-, 8-slice data by 

different aging procedures are presented in Tables 18 and 19. Discussions regarding 

their correlations with other properties and their potential bearing on prediction of field 

perfonnance will be presented later. Other significant findings are discussed below. 

Percent LMS is unidirectionally sensitive to TFOT (PAR) and pressure oxidation 

(PO). An example is shown in Figure 11. Therefore, the HP-OPC technique can be 

used to monitor and predict oxidative aging. For this purpose, all three slicing methods 

can be used. As recognized by others [50,54], it is likely that the aging potential, i.e. 
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Table 15. HP-OPC results - 3-slice and 4-slice methods 

Sample 
ID LMS MMSl MMS2 SMS LMS+MMSl 

(AC-5S) 
4 P A 0  4 . 3 7  2 8 . 2 1  5 7 . 6 2  9 . 8 0  3 2 . 5 8  
4 P A R  6 . 2 7  2 9 . 7 5  5 4 . 4 6  9 . 5 2  3 6 . 0 2  
4 P C 1  5 . 8 1  3 0 . 6 7  5 5 . 5 7  7 . 9 5  3 6 . 4 9  
4 P 0 5  7 . 5 2  2 9 . 9 1  5 3 . 5 1  9 . 0 7  3 7 . 4 2  
4 P 0  7 . 6 5  3 0 . 5 4  5 2 . 7 4  9 . 0 7  3 8 . 1 9  
4 P M  4 . 8 1  3 0 . 4 6  5 5 . 0 4  9 . 6 9  3 5 . 2 8  
4 P C  3 . 9 7  2 8 . 7 4  5 7 . 4 8  9 . 8 2  3 2 . 7 1  
4 L 3 5  5 . 2 7  3 0 . 6 0  5 4 . 9 6  9 . 1 8  3 5 . 8 6  
4 L 7 5  6 . 1 0  3 1 . 4 7  5 3 . 7 1  8 . 7 1  3 7 . 5 7  

5 P A 0  4 . 0 7  2 7 . 7 3  5 8 . 0 4  1 0 . 1 6  3 1 . 8 0  
S P A R  6 . 3 0  2 9 . 6 2  5 4 . 4 6  9 . 6 2  3 5 . 9 2  
5 P C 1  4 . 8 2  3 1 . 6 2  5 6 . 3 7  7 . 1 9  3 6 . 4 5  
5 P 0 5  5 . 8 2  2 8 . 9 3  5 5 . 5 1  9 . 7 4  3 4 . 7 5  
5 P 0  7 . 8 0  3 0 . 7 4  5 2 . 4 6  9 . 0 0  3 8 . 5 4  
5 P M  3 . 9 4  2 9 . 7 8  5 6 . 9 2  9 . 3 6  3 3 . 7 2  
5 L 3 5  5 . 9 0  3 0 . 8 3  5 4 . 4 1  8 . 8 7  3 6 . 7 3  

7 P A 0  1 . 1 6  2 2 . 8 3  6 2 . 7 5  1 3 . 2 6  2 3 . 9 9  
7 P A R  5 . 7 2  2 9 . 3 4  5 5 . 1 6  9 . 7 9  3 5 . 0 6  
7 P C 1  4 . 0 9  2 9 . 4 3  5 8 . 6 7  7 . 8 3  3 3 . 5 2  
7 P 0 5  6 . 4 3  2 9 . 8 2  5 4 . 3 4  9 . 4 1  3 6 . 2 5  
7 P 0  7 . 5 5  3 0 . 8 1  5 2 . 4 8  9 . 1 6  3 8 . 3 6  
7 L 3 5  5 . 1 4  2 9 . 8 2  5 5 . 5 8  9 . 4 7  3 4 . 9 6  

8 P A 0  3 . 8 4  2 8 . 3 8  5 7 . 9 3  9 . 8 6  3 2 . 2 2  
8 P A R  5 . 9 6  2 9 . 6 2  5 4 . 7 7  9 . 6 6  3 5 . 5 7  
8 P C 1  5 . 9 1  3 1 . 5 7  5 4 . 3 6  8 . 1 6  3 7 . 4 8  
8 P 0 5  6 . 3 9  2 9 . 7 1  5 4 . 5 3  9 . 3 8  3 6 . 0 9  
8 P 0  6 . 8 5  3 0 . 4 2  5 3 . 5 3  9 . 2 0  3 7 . 2 7  
8 L 3 5  4 . 9 4  2 9 . 9 7  5 5 . 6 3  9 . 4 6  3 4 . 9 1  

(AC-lOs) 
I P A O  3 . 3 5  2 5 . 6 9  6 1 . 2 1  9 . 7 4  2 9 . 0 5  
I P A R  4 . 5 3  2 7 . 4 9  5 8 . 4 8  9 . 5 1  3 2 . 0 1  
I P C l  4 . 3 7  2 9 . 7 6  5 7 . 1 6  8 . 7 0  3 4 . 1 3  
1 P 0 5  5 . 0 2  2 7 . 7 5  5 7 . 7 9  9 . 4 5  3 2 . 7 7  
I P O  5 . 6 0  2 9 . 0 7  5 6 . 6 3  8 . 7 0  3 4 . 6 7  
1 P M  3 .  6 2  2 8 . 8 0  5 7 . 9 8  9 . 6 0  3 2 . 4 2  
1 L 3 5  4 . 4 3  2 9 . 4 5  5 6 . 9 8  9 . 1 3  3 3 . 8 9  
1 L 7 5  3 . 0 5  2 8 . 4 0  5 8 . 7 4  9 . 8 1  3 1 . 4 5  
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Table 15. continued 

Sample 
ID LMS MMSl MMS2 SMS LMSMMSl 

I I P A O  3 . 7 8  2 8 . 5 3  5 7 . 9 7  9 . 7 2  3 2 . 3 1  
I I P A R  6 . 0 7  3 0 . 2 3  5 4 . 4 8  9 . 2 3  3 6 . 3 0  
l l P C l  6 . 7 3  3 0 . 1 6  5 3 . 9 6  9 . 1 6  3 6 . 8 8  
1 1 P 0 5  6 . 7 1  3 0 . 0 9  5 4 . 0 8  9 . 1 3  3 6 . 7 9  
I l P O  7 . 0 7  3 0 . 9 8  5 2 . 9 7  8 . 9 8  3 8 . 0 5  
1 1 L 3 5  5 . 1 8  2 9 . 8 4  5 5 . 3 1  9 . 6 7  3 5 . 0 2  

(AC-20S) 
2  P A O  4 . 5 6  3 1 . 3 4  5 6 . 8 9  7 . 2 1  3 5 . 9 0  
2  P A R  6 . 1 7  3 3 . 4 6  5 3 . 4 8  6 . 9 0  3 9 . 6 3  
2 P C 1  6 . 2 3  3 3 . 0 6  5 2 . 9 6  7 . 7 3  3 9 . 3 0  
2 P 0 5  6 . 5 4  3 3 . 4 8  5 2 . 8 9  7 . 0 9  4 0 . 0 2  
2 P 0  7 . 4 5  3 5 . 2 2  5 0 . 9 8  6 . 3 6  4 2 . 6 6  
2  P M  5 . 7 2  3 4 . 4 8  5 2 . 8 6  6 . 9 5  4 0 . 1 9  
2 P C  5 . 8 3  3 4 . 4 4  5 2 . 7 9  6 . 9 4  4 0 . 2 7  
2 L M  5 . 9 1  3 3 . 0 8  5 3 . 3 1  7 . 7 0  3 8 . 9 9  
2 L 3 5  5 . 9 9  3 3 . 6 9  5 3 . 0 4  7 . 2 9  3 9 .  6 8  
2 L 7 5  5 . 7 7  3 3 . 1 0  5 3 . 4 8  7 . 6 6  3 8 . 8 7  

3 P A 0  4 . 4 4  2 9 . 2 5  5 7 . 4 0  8 . 9 1  3 3 . 6 8  
S P A R  6 . 5 9  3 0 . 7 7  5 4 . 1 5  8 . 4 9  3 7 . 3 6  
3 P C 1  6 . 2 9  3 0 . 4 3  5 4 . 7 4  8 . 5 5  3 6 . 7 2  
3 P 0 5  7 . 3 3  3 0 . 5 6  5 3 . 5 0  8 . 6 1  3 7 . 8 9  
3 P 0  7 . 9 8  3 1 . 8 6  5 2 . 2 4  7 . 9 2  3 9 . 8 4  
3 P M  4 . 6 1  3 1 . 1 6  5 5 . 0 5  9 . 1 9  3 5 . 7 7  
3 P C  4 . 3 0  3 0 . 8 1  5 6 . 1 3  8 . 7 6  3 5 . 1 1  
3 L 3 5  5 . 7 2  3 1 . 7 7  5 4 . 1 7  8 . 3 5  3 7 . 4 9  
3 L 7 5  5 . 9 6  3 2 . 1 9  5 3 . 6 0  8 . 2 6  3 8 . 1 5  

l O P A O  3 . 9 3  2 8 . 7 5  5 7 . 9 6  9 . 3 7  3 2 .  6 8  
l O P A R  6 . 2 7  3 0 . 4 8  5 4 . 3 9  8 . 8 7  3 6 . 7 6  
l O P C l  4 . 9 5  3 1 . 4 0  5 4 . 8 6  8 . 7 9  3 6 . 3 5  
1 0 P 0 5  6 . 8 2  3 0 . 2 7  5 4 . 1 0  8 . 8 2  3 7 . 0 9  
l O P O  7 . 3 4  3 1 . 1 1  5 2 . 9 5  8 . 6 0  3 8 . 4 5  
1 0 L 3 5  1 1 . 2 8  3 1 . 6 6  4 9 . 3 5  7 . 7 0  4 2 . 9 4  

1 2 P A 0  4 . 3 3  2 9 . 5 3  5 7 . 0 6  9 . 0 9  3 3 . 8 6  
1 2 P A R  6 . 5 4  3 0 . 7 5  5 4 . 0 4  8 . 6 7  3 7 . 2 9  
1 2 P C 1  5 . 3 8  2 9 . 2 1  5 6 . 3 5  9 . 0 6  3 4 . 5 9  
1 2 P 0 5  6 . 9 3  3 0 . 5 3  5 3 . 9 1  8 . 6 2  3 7 . 4 6  
1 2 P 0  7 . 4 9  3 1 . 5 5  5 2 . 5 5  8 . 4 2  3 9 . 0 3  
1 2 L 3 5  5 . 5 8  3 0 . 6 3  5 4 . 7 1  9 . 0 8  3 6 . 2 1  



www.manaraa.com

100 

Table 16. HP-GPC results - 8-slice method 

Sample 
ID XI X2 X3 X4 X5 X6 X7 X8 

(AC-5S) 
4 P A 0  1 3 . 8 0  1 4 . 6 8  1 7 . 2 4  1 3 . 2 9  1 2 . 2 1  1 2 . 6 7  7 . 8 7  8 . 2 5  
4 P A R  1 7 . 1 4  1 4 . 8 8  1 6 . 4 9  1 2 . 5 6  1 1 . 5 0  1 1 . 9 1  7 . 5 0  8 . 0 2  
4 P C 1  1 6 . 6 9  1 5 . 6 5  1 7 . 0 9  1 3 . 1 1  1 1 . 8 4  1 2 . 0 4  6 . 9 6  6 . 6 3  
4 P 0 5  1 8 . 7 1  1 4 . 7 4  1 6 . 3 4  1 2 . 3 0  1 1 . 3 7  1 1 . 6 4  7 . 2 7  7 . 6 3  
4 P 0  1 9 . 2 0  1 5 . 0 7  1 6 . 1 1  1 2 . 1 7  1 1 . 0 4  1 1 . 5 5  7 . 2 4  7 . 6 2  
4 P M  1 5 . 1 3  1 5 . 7 0  1 7 . 8 3  1 2 . 7 3  1 1 . 3 3  1 1 . 7 0  7 . 3 9  8 . 2 0  
4 P C  1 3 . 4 5  1 5 . 0 4  1 7 . 5 6  1 3 . 3 1  1 2 . 0 4  1 2 . 4 9  7 . 8 7  8 . 2 4  
4 L 3 5  1 6 . 1 7  1 5 . 5 2  1 7 . 3 0  1 2 . 7 7  1 1 . 4 9  1 1 . 7 4  7 . 2 8  7 . 7 4  
4 L 7 5  1 7 . 5 7  1 5 . 7 8  1 7 . 2 2  1 2 . 5 7  1 1 . 1 6  1 1 . 3 7  7 . 0 2  7 . 3 2  

5 P A 0  1 3 . 3 0  1 4 . 4 2  1 7 . 1 3  1 3 . 4 0  1 2 . 3 0  1 2 . 8 3  8 . 0 6  8 . 5 6  
5 P A R  1 7 . 1 2  1 4 . 8 2  1 6 . 4 4  1 2 . 5 5  1 1 . 4 4  1 1 . 9 8  7 . 5 3  8 . 1 1  
5 P C 1  1 5 . 7 7  1 6 . 3 0  1 8 . 2 2  1 3 . 8 5  1 2 . 0 4  1 1 . 5 0  6 . 3 6  5 . 9 7  
5 P 0 5  1 5 . 8 6  1 4 . 8 2  1 6 . 8 3  1 2 . 9 7  1 1 . 6 5  1 2 . 0 7  7 . 5 8  6 . 2 3  
5 P 0  1 9 . 5 6  1 5 . 0 4  1 6 . 0 7  1 2 . 1 0  1 0 . 9 7  1 1 . 5 0  7 . 1 8  7 . 5 7  
5 P M  1 3 . 6 5  1 5 . 6 3  1 8 . 0 9  1 3 . 2 2  1 1 . 8 2  1 2 . 1 6  7 . 5 9  7 . 8 5  
5 L 3 5  1 7 . 1 0  1 5 . 5 0  1 6 . 9 1  1 2 . 6 4  1 1 . 3 7  1 1 . 7 6  7 . 3 2  7 .  4 1  

7 P A 0  7 . 3 9  1 2 . 7 8  1 6 . 5 0  1 3 . 7 7  1 3 . 2 1  1 4 . 9 6  1 0 . 2 1  1 1 . 1 9  
7 P A R  1 6 . 2 0  1 4 . 8 3  1 6 . 6 7  1 2 . 7 6  1 1 . 6 1  1 2 . 1 0  7 . 5 8  8 . 2 7  
7 P C 1  1 3 . 8 1  1 5 . 4 0  1 8 . 0 7  1 4 . 3 0  1 2 . 6 5  1 2 . 3 3  6 . 9 5  6 . 5 0  
7 P 0 5  1 7 . 1 1  1 5 . 0 4  1 6 . 8 3  1 2 . 6 0  1 1 . 4 8  1 1 . 6 7  7 . 3 4  7 . 9 4  
7 P 0  1 9 . 2 9  1 5 . 1 1  1 6 . 1 6  1 2 . 1 2  1 1 . 0 1  1 1 . 4 2  7 . 1 5  7 . 7 3  
7 L 3 5  1 5 . 6 6  1 5 . 1 7  1 7 . 0 8  1 2 . 8 9  1 1 . 7 2  1 2 . 0 6  7 . 4 5  7 . 9 9  

8 P A 0  1 3 . 2 4  1 4 . 8 3  1 7 . 4 0  1 3 . 4 3  1 2 . 2 6  1 2 . 6 9  7 . 8 5  8 . 3 1  
8 P A R  1 6 . 6 3  1 4 . 9 3  1 6 . 5 8  1 2 . 6 8  1 1 . 5 1  1 2 . 0 0  7 . 5 2  8 . 1 6  
8 P C 1  1 7 . 3 7  1 5 . 9 5  1 7 . 0 1  1 2 . 8 0  1 1 . 4 0  1 1 . 6 8  7 . 0 1  6 . 7 8  
8 P 0 5  1 7 . 0 2  1 5 . 0 2  1 6 . 7 8  1 2 . 6 3  1 1 . 4 4  1 1 . 8 6  7 . 3 7  7 . 9 0  
8 P 0  1 8 . 2 7  1 5 . 0 4  1 6 . 3 3  1 2 . 3 8  1 1 . 2 5  1 1 . 6 9  7 . 2 9  7 . 7 5  
8 L 3 5  1 5 . 4 1  1 5 . 3 3  1 7 . 2 1  1 2 . 9 0  1 1 . 6 5  1 2 . 0 7  7 . 4 7  7 . 9 7  

(AC-lOs) 
I P A O  1 1 . 6 5  
I P A R  1 3 . 8 8  
I P C l  1 4 . 2 4  
1 P 0 5  1 4 . 4 4  
I P O  1 6 . 0 4  
I P M  1 2 . 9 7  
1 L 3 5  1 4 . 5 2  
1 L 7 5  1 2 . 2 3  

1 3 . 4 4  1 7 . 2 3  1 4 . 3 4  1 3 . 2 9  1 3 . 7 3  8 . 1 6  8 . 1 6  
1 4 . 1 5  1 6 . 8 7  1 3 . 6 5  1 2 . 6 9  1 3 . 0 1  7 . 7 6  7 . 9 9  
1 5 . 6 6  1 7 . 6 5  1 3 . 4 4  1 2 . 1 9  1 2 . 2 6  7 . 2 8  7 . 2 7  
1 4 . 3 2  1 7 . 0 5  1 3 . 5 3  1 2 . 4 8  1 2 . 7 0  7 . 5 2  7 . 9 7  
1 4 . 6 6  1 6 . 6 9  1 3 . 1 9  1 2 . 2 8  1 2 . 5 7  7 . 2 3  7 . 3 4  
1 5 . 1 0  1 7 . 9 0  1 3 . 4 2  1 2 . 2 0  1 2 . 5 8  7 . 7 8  8 . 0 6  
1 5 . 2 2  1 7 . 4 3  1 3 . 3 0  1 2 . 1 1  1 2 . 3 3  7 . 4 1  7 . 6 9  
1 4 . 9 7  1 7 . 7 4  1 3 . 5 4  1 2 . 4 5  1 2 . 9 3  7 . 8 9  8 . 2 6  
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Table 16. continued 

Sample 
ID XI X2 X3 X4 X5 X6 X7 X8 

I I P  A O  1 3 . 2 5  1 4 . 8 8  1 7 . 5 5  1 3 . 5 0  1 2 . 3 3  1 2 . 5 5  7 . 7 5  8 . 1 9  
I I P A R  1 7 . 0 2  1 5 . 1 9  1 6 . 8 0  1 2 . 7 0  1 1 . 4 6  1 1 . 7 7  7 . 2 8  7 . 7 8  
l l P C l  1 7 . 7 2  1 5 . 0 9  1 6 . 6 4  1 2 . 5 6  1 1 . 4 2  1 1 . 6 5  7 . 1 7  7 . 7 5  
1 1 P 0 5  1 7 . 5 0  1 5 . 2 3  1 6 . 7 5  1 2 . 7 4  1 1 . 2 9  1 1 . 6 4  7 . 1 4  7 . 7 1  
I l P O  1 8 . 7 1  1 5 . 3 1  1 6 . 4 6  1 2 . 3 2  1 1 . 1 3  1 1 . 4 3  7 . 0 6  7 . 5 8  
1 1 L 3 5  1 5 . 7 0  1 5 . 2 4  1 7 . 0 3  1 2 . 9 5  1 1 . 5 2  1 1 . 9 7  7 . 3 9  8 . 2 0  

(AC-20S) 
2  P A G  1 4 . 8 7  1 6 . 4 2  1 9 . 2 5  1 4 . 4 9  1 2 . 0 5  1 0 . 9 3  5 . 9 2  6 . 0 8  
2  P A R  1 8 . 0 2  1 7 . 0 4  1 8 . 6 0  1 3 . 5 3  1 1 . 2 5  1 0 . 2 2  5 . 5 0  5 . 8 5  
2 P C 1  1 7 .  9 5  1 6 . 8 5  1 8 . 1 9  1 3 . 3 2  1 1 . 0 8  1 0 . 2 6  5 . 7 4  6 . 6 1  
2 P 0 5  1 8 . 2 2  1 7 . 2 0  1 8 . 8 2  1 3 . 3 5  1 1 . 0 7  9 . 9 1  5 . 3 9  6 . 0 5  
2 P 0  2 0 . 5 3  1 7 . 6 1  1 8 . 0 6  1 2 . 8 4  1 0 . 6 9  9 . 7 8  5 . 0 9  5 . 4 1  
2 P M  1 7 . 8 2  1 7 . 6 5  1 8 . 9 0  1 3 . 4 1  1 0 . 9 6  9 . 9 6  5 . 3 7  5 . 9 2  
2 P C  1 8 . 2 4  1 7 . 4 2  1 8 . 7 9  1 3 . 3 2  1 0 . 9 9  9 . 9 3  5 . 4 2  5 . 9 0  
2 L M  1 7 . 7 5  1 6 . 7 9  1 8 . 0 3  1 3 . 0 8  1 1 . 2 0  1 0 . 5 8  6 . 0 3  6 . 5 3  
2 L 3 5  1 8 . 2 0  1 7 . 0 3  1 8 . 1 8  1 3 . 0 5  1 1 . 0 9  1 0 . 4 4  5 . 8 7  6 . 1 6  
2 L 7 5  1 7 . 6 9  1 6 . 7 6  1 8 . 0 3  1 3 . 0 9  1 1 . 2 7  1 0 . 6 2  6 . 0 5  6 . 4 9  

3 P A 0  1 4 . 3 2  1 5 . 1 3  1 7 . 7 0  1 3 . 5 4  1 2 . 2 8  1 2 . 2 6  7 . 2 7  7 . 5 0  
S P A R  1 7 . 8 5  1 5 . 4 4  1 6 . 9 0  1 2 . 8 0  1 1 . 5 9  1 1 . 4 5  6 . 8 2  7 . 1 5  
3 P C 1  1 7 . 1 7  1 5 . 3 6  1 7 . 0 8  1 2 . 8 5  1 1 . 6 7  1 1 . 7 4  6 . 9 4  7 . 2 1  
3 P 0 5  1 8 . 3 6  1 5 . 3 8  1 6 . 8 6  1 2 . 6 7  1 1 . 3 9  1 1 . 3 0  6 . 7 6  7 . 2 8  
3 P 0  2 0 . 1 5  1 5 .  6 8  1 6 . 4 4  1 2 . 3 0  1 1 . 1 5  1 1 . 1 8  6 . 4 0  6 . 7 1  
3 P M  1 5 . 0 4  1 6 . 1 6  1 8 . 2 4  1 2 . 9 2  1 1 . 4 3  1 1 . 4 8  6 . 9 2  7 .  8 2  
3 P C  1 4 . 4 3  1 6 . 0 6  1 8 . 5 2  1 3 . 2 1  1 1 . 6 7  1 1 . 7 1  7 . 0 3  7 . 3 7  
3 L 3 5  1 7 . 1 9  1 6 . 0 2  1 7 . 4 9  1 2 . 9 0  1 1 . 4 1  1 1 . 2 8  6 . 6 6  7 . 0 5  
3 L 7 5  1 7 . 6 0  1 6 . 2 4  1 7 . 6 0  1 2 . 8 0  1 1 . 2 1  1 1 . 0 6  6 . 5 4  6 . 9 6  

l O P A O  1 3 . 4 6  1 5 . 0 4  1 7 . 6 3  1 3 . 6 5  1 2 . 4 0  1 2 . 4 7  7 . 4 6  7 . 9 0  
l O P A R  1 7 . 3 5  1 5 . 3 1  1 6 .  9 2  1 2 . 7 7  1 1 . 5 1  1 1 . 6 4  7 . 0 2  7 . 4 9  
l O P C l  1 6 . 0 8  1 6 . 0 0  1 7 . 4 3  1 2 . 8 3  1 1 . 5 8  1 1 .  6 9  6 . 9 8  7 .  4 1  
1 0 P 0 5  1 7 . 7 5  1 5 . 2 0  1 7 . 0 9  1 2 . 7 0  1 1 . 4 5  1 1 . 4 7  .  6 . 9 0  7 . 4 5  
l O P O  1 9 . 1 0  1 5 . 3 2  1 6 . 5 3  1 2 . 4 3  1 1 . 2 3  1 1 . 3 2  6 . 8 2  7 . 2 6  
1 0 L 3 5  2 3 . 7 8  1 5 . 2 7  1 5 . 8 0  1 1 . 6 0  1 0 . 3 7  1 0 . 4 6  6 . 2 7  6 . 4 6  

1 2 P A 0  1 4 . 3 4  1 5 . 2 9  1 7 . 7 0  1 3 . 4 2  1 2 . 1 2  1 2 . 2 0  7 . 2 7  7 . 6 6  
1 2 P A R  1 7 . 7 6  1 5 . 4 0  1 6 . 9 4  1 2 . 7 4  1 1 . 4 5  1 1 . 5 1  6 . 8 9  7 . 3 2  
1 2 P C 1  1 5 . 5 5  1 4 . 9 8  1 6 . 8 3  1 3 . 1 6  1 2 . 0 2  1 2 . 3 8  7 . 5 0  7 . 5 9  
1 2 P 0 5  1 7 . 9 1  1 5 . 4 3  1 7 . 0 5  1 2 . 8 3  1 1 . 3 1  1 1 . 3 6  6 . 8 3  7 . 2 7  
1 2 P 0  1 9 . 4 2  1 5 . 5 4  1 6 . 5 8  1 2 . 4 0  1 1 . 1 0  1 1 . 1 6  6 . 6 9  7 . 1 1  
1 2 L 3 5  1 6 . 5 7  1 5 . 4 7  1 7 . 2 4  1 2 . 8 0  1 1 . 5 0  1 1 . 6 4  7 . 0 8  7 . 6 8  
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Table 17. HP-OPC results - molecular weight distribution characteristics 

Sample 
ID Weighted Molecular Weight Polydisperse Index 

(AC-5s) 
4  P A O  6 . 6 3 E + 0 3  1 1 . 4 8 4  
4 P A R  8 . 3 5 E + 0 3  1 3 . 8 5 7  
4 P C 1  8 . 1 2 E + 0 3  1 2 . 4 7 2  
4 P 0 5  9 . 4 5 E + 0 3  1 5 . 1 8 3  
4 P 0  9 . 6 1 E + 0 3  1 5 . 3 1 8  
4 P M  7 . 2 3 E + 0 3  1 2 . 0 7 3  
4 P C  6 . 4 2 E + 0 3  1 1 . 0 6 1  
4 L 3 5  7 . 5 3 E + 0 3  1 2 . 2 7 0  
4 L 7 5  8 . 3 5 E + 0 3  1 3 . 0 8 0  

5 P A 0  6 . 3 3 E + 0 3  1 1 . 2 1 1  
5 P A R  8 . 3 5 E + 0 3  1 3 . 9 3 4  
5 P C 1  7 . 3 7 E + 0 3  1 0 . 7 4 6  
5 P 0 5  7 . 9 3 E + 0 3  1 3 . 4 1 7  
5 P 0  9 . 7 6 E + 0 3  1 5 . 4 6 6  
5 P M  6 . 5 0 E + 0 3  1 0 . 8 5 9  
5 L 3 5  8 . 1 4 E + 0 3  1 2 . 9 8 9  

7 P A 0  3 . 5 4 E + 0 3  7 . 5 9 6  
7 P A R  7 . 8 8 E + 0 3  1 3 . 3 5 9  
7 P C 1  6 . 5 7 E + 0 3  1 0 . 2 3 0  
7 P 0 5  8 . 5 6 E + 0 3  1 4 . 0 7 0  
7 P 0  9 . 5 0 E + 0 3  1 5 . 1 8 4  
7 L 3 5  7 . 3 7 E + 0 3  1 2 . 2 9 8  

8 P A 0  6 . 2 1 E + 0 3  1 0 . 8 1 3  
8  P A R  8 . 0 8 E + 0 3  1 3 . 5 5 3  
8 P C 1  8 . 2 7 E + 0 3  1 2 . 6 7 1  
8 P 0 5  8 . 5 3 E + 0 3  1 4 . 0 3 6  
8 P 0  8 . 8 7 E + 0 3  1 4 . 3 5 9  
8 L 3 5  7 . 2 3 E + 0 3  1 2 . 0 5 5  

(AC-lOs) 
I P A O  5 . 5 7 E + 0 3  9 . 9 6 2  
I P A R  6 . 7 0 E + 0 3  1 1 . 5 6 2  
I P C l  6 . 7 9 E + 0 3  1 1 . 0 0 0  
1 P 0 5  7 . 2 1 E + 0 3  1 2 . 2 8 4  
I P O  7 . 7 0 E + 0 3  1 2 . 5 3 7  
1 P M  6 . 1 0 E + 0 3  1 0 . 4 5 6  
1 L 3 5  6 . 7 6 E + 0 3  1 1 . 2 3 4  
1 L 7 5  5 . 5 4 E + 0 3  9 . 6 9 8  
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Table 17. continued 

Sample 
ID Weighted Molecular Weight Polydispcrse Index 

I I P  A O  6 . 1 5 E + 0 3  1 0 . 6 2 5  
I I P A R  8 . 2 2 E + 0 3  1 3 . 4 1 0  
l l P C l  8 . 8 5 E + 0 3  1 4 . 3 2 0  
1 1 P 0 5  8 . 7 7 E + 0 3  1 4 . 1 5 2  
I l P O  9 . 1 5 E + 0 3  1 4 . 5 2 5  
1 1 L 3 5  7 . 3 7 E + 0 3  1 2 . 3 9 5  

(AC-20S) 
2  P A O  7 . 2 1 E + 0 3  1 0 . 4 4 4  
2  P A R  8 . 7 4 E + 0 3  1 1 . 9 9 9  
2 P C 1  8 . 8 7 E + 0 3  1 2 . 7 8 9  
2 P 0 5  9 . 1 7 E + 0 3  1 2 . 6 1 5  
2 P 0  9 . 9 5 E + 0 3  1 2 . 8 9 0  
2  P M  8 . 3 8 E + 0 3  1 1 . 4 4 0  
2 P C  8 . 5 4 E + 0 3  1 1 . 6 4 0  
2 L M  8 . 4 7 E + 0 3  1 2 . 3 0 4  
2 L 3 5  8 . 5 0 E + 0 3  1 1 . 9 8 8  
2 L 7 5  8 . 3 3 E + 0 3  1 2 . 0 9 6  

3 P A 0  6 . 7 7 E + 0 3  1 1 . 1 2 6  
S P A R  8 . 7 4 E + 0 3  1 3 . 5 9 1  
3 P C 1  8 . 5 3 E + 0 3  1 3 . 4 2 4  
3 P 0 5  9 . 4 4 E + 0 3  1 4 . 6 9 6  
3 P 0  l . O O E + 0 4  1 4 . 8 4 0  
3 P M  7 . 1 3 E + 0 3  1 1 . 5 7 5  
3 P C  6 . 8 6 E + 0 3  1 0 . 9 6 0  
3 L 3 5  8 . 0 3 E + 0 3  1 2 . 3 5 0  
3 L 7 5  8 . 3 3 E + 0 3  1 2 . 6 2 3  

l O P A O  6 . 3 1 E + 0 3  1 0 . 6 8 6  
l O P A R  8 . 4 4 E + 0 3  1 3 . 4 6 4  
l O P C l  7 . 4 0 E + 0 3  1 1 . 7 7 5  
1 0 P 0 5  8 . 9 6 E + 0 3  1 4 . 1 7 6  
l O P O  9 . 3 7 E + 0 3  1 4 . 5 4 6  
1 0 L 3 5  1 . 3 8 E + 0 4  1 9 . 5 6 3  

1 2 P A 0  6 . 6 9 E + 0 3  1 1 . 0 5 1  
1 2 P A R  8 . 7 0 E + 0 3  1 3 . 6 7 7  
1 2 P C 1  7 . 5 7 E + 0 3  1 2 . 4 9 0  
1 2 P 0 5  9 . 0 5 E + 0 3  1 4 . 1 2 4  
1 2 P 0  9 . 5 2 E + 0 3  1 4 . 5 5 5  
1 2 L 3 5  7 . 8 1 E + 0 3  1 2 . 6 2 5  
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Tnhle 18. HP-GPC results - % changes, 3-sIice and 4-slice methods 

ID LMS MMSl MMS2 SMS LMS+MMSl 

(AC-5s) 
4 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
4 P A R  4 3 . 3 5  5 . 4 7  - 5 . 4 8  - 2 . 9 1  1 0 . 5 5  
4 P C 1  3 2 . 9 0  8 . 7 5  - 3 . 5 6  - 1 8 . 9 2  1 1 . 9 9  
4 P 0 5  7 1 . 8 1  6 . 0 3  - 7 . 1 4  - 7 . 4 4  1 4 . 8 6  
4 P 0  7 4 . 8 3  8 . 2 8  - 8 . 4 8  - 7 . 4 7  1 7 . 2 1  
4 P M  1 0 . 0 6  8 . 0 0  - 4 . 4 8  - 1 . 1 6  8 . 2 8  
4 P C  - 9 . 3 5  1 . 8 9  - 0 . 2 5  0 . 1 6  0 . 3 8  
4 L 3 5  2 0 . 3 9  8 . 4 7  - 4 . 6 1  - 6 . 3 7  1 0 . 0 7  
4 L 7 5  3 9 . 4 8  1 1 . 5 8  - 6 . 7 8  - 1 1 . 1 1  1 5 . 3 2  

5 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
5 P A R  5 4 . 6 0  6 . 8 5  - 6 . 1 6  - 5 . 3 6  1 2 . 9 7  
5 P C 1  1 8 . 3 6  1 4 . 0 6  - 2 . 8 8  - 2 9 . 2 7  1 4 . 6 1  
5 P 0 5  4 2 . 9 7  4 . 3 5  - 4 . 3 7  - 4 . 1 1  9 . 3 0  
5 P 0  9 1 . 5 5  1 0 . 8 6  - 9 . 6 2  - 1 1 . 4 1  2 1 . 2 0  
5 P M  - 3 . 1 9  7 . 4 0  - 1 . 9 3  - 7 . 8 7  6 . 0 4  
5 L 3 5  4 4 . 8 6  1 1 . 2 0  - 6 . 2 6  - 1 2 . 7 4  1 5 . 5 1  

7  P A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
7 P A R  3 9 1 . 1 5  2 8 . 5 4  - 1 2 . 1 0  - 2 6 . 2 1  4 6 . 1 3  
7 P C 1  2 5 1 . 2 0  2 8 . 9 2  - 6 . 5 0  - 4 1 . 0 1  3 9 . 7 0  
7 P 0 5  4 5 2 . 1 5  3 0 . 6 5  - 1 3 . 4 0  - 2 9 . 0 4  5 1 . 1 0  
7 P 0  5 4 8 . 5 4  3 4 . 9 8  - 1 6 . 3 7  - 3 0 . 9 3  5 9 . 9 0  
7 L 3 5  3 4 1 . 2 4  3 0 . 6 3  - 1 1 . 4 3  - 2 8 . 6 4  4 5 . 7 0  

8 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
8 P A R  5 5 , 1 2  4 . 3 4  - 5 . 4 5  - 2 . 0 1  1 0 . 3 9  
8 P C 1  5 3 . 9 7  1 1 . 2 4  — 6 . 1 6  - 1 7 . 2 1  1 6 . 3 3  
8 P 0 5  6 6 . 3 5  4 . 6 6  - 5 . 8 6  - 4 . 8 8  1 2 . 0 1  
8 P 0  7 8 . 5 4  7 . 1 7  - 7 . 5 9  — 6 . 6 8  1 5 . 6 7  
8 L 3 5  2 8 . 7 1  5 . 6 0  - 3 . 9 6  - 4 . 0 8  8 . 3 5  

( A C - l O s )  
I P A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
I P A R  3 4 . 9 4  6 . 9 8  - 4 . 4 6  - 2 . 3 9  1 0 . 2 1  
I P C l  3 0 . 3 2  1 5 . 8 4  - 6 . 6 2  - 1 0 . 7 0  1 7 . 5 1  
1 P 0 5  4 9 . 6 1  8 . 0 0  - 5 . 5 9  - 3 . 0 3  1 2 . 8 1  
I P O  6 6 . 8 8  1 3 . 1 6  - 7 . 4 9  - 1 0 . 6 5  1 9 . 3 6  
1 P M  8 . 0 5  1 2 . 1 0  - 5 . 2 8  - 1 . 4 9  1 1 . 6 3  
1 L 3 5  3 2 . 2 0  1 4 . 6 3  - 6 . 9 1  - 6 . 2 6  1 6 . 6 6  
1 L 7 5  - 9 . 2 1  1 0 . 5 5  - 4 . 0 4  0 . 7 3  8 . 2 7  
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Table 18. continued 

Sample 
ID LMS MMSl MMS2 SMS LMSMMSl 

H P  A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
I I P A R  6 0 .  6 5  5 . 9 4  - 6 . 0 2  - 5 . 0 9  1 2 . 3 4  
l l P C l  7 7 . 9 8  5 . 7 0  - 6 . 9 2  - 5 . 7 7  1 4 . 1 5  
1 1 P 0 5  7 7 . 4 8  5 . 4 6  - 6 . 7 0  - 6 . 1 4  1 3 . 8 8  
I l P O  8 7 . 1 9  8 . 5 8  - 8 . 6 2  - 7 . 6 4  1 7 . 7 7  
1 1 L 3 5  3 7 . 0 5  4 . 6 0  - 4 . 5 8  - 0 . 5 0  8 . 3 9  

(AC-20S) 
2  P A G  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
2  P A R  3 5 . 2 5  6 . 7 5  — 6 . 0 0  - 4 . 2 9  1 0 . 3 7  
2 P C 1  3 6 . 5 2  5 . 5 0  - 6 . 9 1  7 . 2 8  9 . 4 4  
2 P 0 5  4 3 . 3 6  6 . 8 2  - 7 . 0 3  - 1 . 6 1  1 1 . 4 6  
2 P 0  6 3 . 1 9  1 2 . 3 6  - 1 0 . 3 9  - 1 1 . 8 2  1 8 . 8 3  
2  P M  2 5 . 2 2  1 0 . 0 1  - 7 . 0 9  - 3 . 5 4  1 1 . 9 5  
2 P C  2 7 . 6 7  9 . 8 9  - 7 . 2 1  - 3 . 7 5  1 2 . 1 5  
2 L M  2 9 . 4 5  5 . 5 5  - 6 . 2 9  6 . 8 1  8 . 5 8  
2 L 3 5  3 1 . 2 7  7 . 4 9  - 6 . 7 8  1 . 1 7  1 0 . 5 1  
2 L 7 5  2 6 . 4 0  5 . 6 0  - 6 . 0 1  6 . 2 7  8 . 2 5  

3 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
S P A R  4 8 . 6 0  5 . 2 1  - 5 . 6 6  - 4 . 7 7  1 0 . 9 3  
3 P C 1  4 1 . 7 9  4 . 0 3  - 4 . 6 4  - 4 . 0 8  9 . 0 0  
3 P 0 5  6 5 . 2 6  4 . 5 0  - 6 . 7 9  - 3 . 4 3  1 2 . 5 0  
3 P 0  7 9 . 9 1  8 . 9 3  - 8 . 9 9  - 1 1 . 1 1  1 8 . 2 8  
3 P M  3 .  9 2  6 . 5 3  - 4 . 0 9  3 . 0 5  6 . 1 9  
3 P C  - 3 . 0 0  5 . 3 5  - 2 . 2 1  - 1 . 7 8  4 . 2 5  
3 L 3 5  2 9 . 0 1  8 . 6 2  - 5 . 6 2  - 6 . 3 6  1 1 . 3 1  
3 L 7 5  3 4 . 2 4  1 0 . 0 7  - 6 . 6 2  - 7 . 3 8  1 3 . 2 5  

l O P A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
l O P A R  5 9 . 5 0  6 . 0 5  — 6 . 1 6  - 5 . 3 6  1 2 . 4 8  
l O P C l  2 5 . 9 1  9 . 2 2  - 5 . 3 4  — 6 . 1 6  1 1 . 2 3  
1 0 P 0 5  7 3 . 3 0  5 . 3 0  - 6 . 6 5  - 5 . 8 9  1 3 . 4 9  
l O P O  8 6 . 5 0  8 . 2 3  - 8 . 6 3  - 8 . 1 6  1 7 . 6 5  
1 0 L 3 5  1 8 6 . 7 8  1 0 . 1 5  - 1 4 . 8 4  - 1 7 . 8 3  3 1 . 4 1  

1 2 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
1 2 P A R  5 1 . 0 7  4 . 1 2  - 5 . 2 8  - 4 . 6 0  1 0 . 1 2  
1 2 P C 1  2 4 . 4 0  - 1 . 1 0  - 1 . 2 3  - 0 . 3 1  2 . 1 6  
1 2 P 0 5  6 0 . 2 3  3 . 3 7  - 5 . 5 1  - 5 . 1 3  1 0 . 6 3  
1 2 P 0  7 3 . 0 8  6 . 8 1  - 7 . 9 0  - 7 . 3 2  1 5 . 2 8  
1 2 L 3 5  2 9 . 0 5  3 . 7 0  - 4 . 1 1  - 0 . 0 7  6 . 9 4  
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Table 19. HP-OPC results - % change, 8-slice method 

ID XI X2 X3 X4 X5 X6 X7 X8 

(AC-5S) 
4 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
4 P A R  2 4 . 1 9  1 . 3 8  - 4 . 3 3  - 5 . 5 4  - 5 . 8 1  -6. 0 1  - 4 . 6 8  - 2 . 7 0  
4 P C 1  2 0 . 9 7  6 . 6 3  - 0 . 8 8  - 1 . 3 9  - 3 . 0 1  - 5 . 0 0  - 1 1 . 5 4  - 1 9 . 6 6  
4 P 0 5  3 5 . 6 2  0 . 4 2  - 5 . 2 1  - 7 . 4 6  - 6 . 9 2  - 8 . 1 2  - 7 . 5 5  - 7 . 4 8  
4 P 0  3 9 . 1 8  2 . 6 5  - 6 . 5 7  - 8 . 4 8  - 9 . 5 7  - 8 . 8 7  - 7 . 9 7  - 7 . 5 7  
4 P M  9 . 6 3  7 . 0 0  3 . 4 0  - 4 . 2 7  - 7 . 2 3  - 7 . 6 5  - 6 . 1 0  - 0 . 5 2  
4 P C  - 2 . 5 3  2 . 4 7  1 . 8 7  0 . 1 2  - 1 . 4 1  - 1 . 4 0  0 . 0 0  — 0 . 0 5  
4 L 3 5  1 7 . 1 8  5 . 7 2  0 . 3 7  - 3 . 9 1  - 5 . 8 7  - 7 . 3 9  - 7 . 4 6  - 6 . 2 1  
4 L 7 5  2 7 . 3 1  7 . 5 5  - 0 . 1 3  - 5 . 4 6  — 8 .  6 3  - 1 0 . 2 7  - 1 0 . 7 8  - 1 1 . 2 5  

5 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
5 P A R  2 8 . 7 1  2 . 8 0  - 4 . 0 2  - 6 . 3 2  - 6 . 9 9  - 6 . 5 8  — 6 . 6 1  - 5 . 2 5  
5 P C 1  1 8 . 5 8  1 3 . 0 4  6 . 3 5  3 . 3 8  - 2 . 1 9  - 1 0 . 3 6  - 2 1 . 1 3  - 3 0 . 2 4  
5 P 0 5  1 9 . 2 6  2 . 7 6  - 1 . 7 6  - 3 . 2 4  - 5 . 2 9  - 5 . 9 3  — 6 . 0 0  - 3 . 8 1  
5 P 0  4 7 . 0 9  4 . 3 3  - 6 . 1 9  - 9 . 6 8  - 1 0 . 8 2  - 1 0 . 3 5  - 1 0 . 9 1  - 1 1 . 5 7  
5 P M  2 . 6 4  8 . 3 6  5 . 5 9  - 1 . 3 9  - 3 . 9 0  - 5 . 2 2  - 5 . 8 7  - 8 . 2 9  
5 L 3 5  2 8 . 6 0  7 . 5 1  - 1 . 2 9  - 5 . 6 9  - 7 . 6 2  - 8 . 3 5  - 9 . 1 8  - 1 3 . 4 5  

7  P A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
7 P A R  1 1 9 . 2 8  1 6 . 0 1  1 . 0 0  - 7 . 3 3  - 1 2 . 1 5  - 1 9 . 1 6  - 2 5 . 7 3  - 2 6 . 0 5  
7 P C 1  8 7 . 0 0  2 0 . 5 1  9 . 5 4  3 . 8 6  - 4 . 2 7  - 1 7 . 5 9  - 3 1 . 9 7  - 4 1 . 9 1  
7 P 0 5  1 3 1 . 7 1  1 7 . 6 7  1 . 9 9  - 8 . 5 0  - 1 3 . 1 4  - 2 2 . 0 2  - 2 8 . 1 4  - 2 9 . 0 0  
7 P 0  1 6 1 . 2 2  1 8 . 2 5  - 2 . 0 4  - 1 1 . 9 7  - 1 6 . 6 8  - 2 3 . 6 7  - 2 9 . 9 6  - 3 0 . 8 7  
7 L 3 5  1 1 1 . 9 8  1 8 . 6 8  3 . 4 9  - 6 . 3 8  - 1 1 . 3 2  - 1 9 . 4 1  - 2 7 . 0 3  - 2 8 . 6 3  

8 P A 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
8 P A R  2 5 . 5 9  0 . 6 8  - 4 . 7 1  - 5 . 6 4  - 6 . 1 3  - 5 . 3 8  - 4 . 2 1  - 1 . 8 6  
8 P C 1  3 1 . 1 5  7 . 5 4  - 2 . 2 0  - 4 . 7 0  - 7 . 0 1  - 7 . 9 2  - 1 0 . 7 2  - 1 8 . 3 8  
8 P 0 5  2 8 . 5 2  1 . 2 7  - 3 . 5 3  - 6 . 0 2  - 6 . 7 1  — 6 . 5 6  - 6 . 1 3  - 4 .  9 4  
8 P 0  3 7 . 9 6  1 . 4 4  - 6 . 1 1  - 7 . 8 7  - 8 . 2 6  - 7 . 8 3  - 7 . 1 1  - 6 . 7 9  
8 L 3 5  1 6 . 3 4  3 . 4 0  - 1 . 0 9  - 3 . 9 7  - 4 . 9 9  - 4 . 8 9  - 4 . 7 5  - 4 . 1 3  

(AC-lOs) 
I P A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
I P A R  1 9 . 1 5  5 . 2 8  - 2 . 1 2  - 4 . 8 2  - 4 . 4 7  - 5 . 2 6  - 4 . 8 5  - 2 . 1 1  
I P C l  2 2 . 1 8  1 6 . 5 8  2 . 4 2  - 6 . 2 8  — 8 . 2 6  - 1 0 . 7 1  - 1 0 . 8 1  - 1 0 . 8 8  
1 P 0 5  2 3 .  9 2  6 . 6 2  - 1 . 0 9  - 5 . 6 8  — 6 . 0 8  - 7 . 4 8  - 7 . 8 7  - 2 . 3 8  
I P O  3 7 . 6 9  9 . 1 0  - 3 . 1 5  - 8 . 0 6  - 7 . 5 5  - 8 . 4 1  - 1 1 . 3 9  - 1 0 . 1 3  
1 P M  1 1 . 3 3  1 2 . 3 7  3 . 8 6  - 6 . 4 8  - 8 . 1 7  - 8 . 3 6  — 4 . 6 6  - 1 . 3 1  
1 L 3 5  2 4 . 6 1  1 3 . 3 0  1 . 1 5  - 7 . 2 9  - 8 . 8 7  - 1 0 . 1 8  - 9 . 2 3  - 5 . 8 4  
1 L 7 5  4 . 9 3  1 1 . 4 3  2 . 9 3  - 5 . 6 1  - 6 . 3 3  - 5 . 8 1  - 3 . 3 0  1 . 1 9  
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Table 19. continued 

Sample 
ID XI X2 X3 X4 X5 X6 X7 X8 

I I P  A O  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
I I P A R  2 8 . 4 5  2 . 0 6  - 4 . 2 5  - 5 . 9 3  - 7 . 0 0  - 6 . 2 1  - 6 . 1 3  - 4 . 9 7  
l l P C l  3 3 . 7 9  1 . 3 8  - 5 . 1 6  - 6 . 9 6  - 7 . 3 4  - 7 . 2 3  - 7 . 4 5  - 5 . 4 3  
1 1 P 0 5  3 2 . 1 0  2 . 3 0  - 4 . 5 2  - 5 . 6 5  - 8 . 3 7  - 7 . 2 7  - 7 . 8 8  - 5 . 8 8  
I l P O  4 1 . 2 0  2 . 8 8  - 6 . 2 1  - 8 . 7 6  - 9 . 6 8  - 8 . 9 2  - 8 . 8 5  - 7 . 4 7  
1 1 L 3 5  1 8 . 5 1  2 . 3 8  - 2 . 9 2  - 4 . 0 4  — 6 . 5 6  - 4 . 6 4  - 4 . 6 3  0 . 1 2  

(AC-20S) 
2 PAG 0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
2PAR 2 1 . 2 2  3 . 7 4  - 3 . 3 9  — 6 . 6 4  - 6 . 6 2  - 6 . 4 8  - 7 . 0 0  - 3 . 8 5  
2PC1 2 0 . 7 5  2 . 6 2  - 5 . 5 3  — 8 . 0 8  — 8 . 0 6  - 6 . 1 4  - 3 . 0 1  8 . 7 0  
2P05 2 2 . 5 6  4 . 7 1  - 2 . 2 2  - 7 . 8 9  - 8 . 1 5  - 9 . 3 5  - 8 . 8 1  - 0 . 5 6  
2P0 3 8 . 0 8  7 . 2 0  - 6 . 1 7  - 1 1 . 3 9  - 1 1 . 3 2  - 1 0 . 5 1  - 1 4 . 0 2  - 1 1 . 0 3  
2PM 1 9 . 8 8  7 . 5 0  - 1 . 8 0  - 7 . 4 7  - 9 . 0 0  - 8 . 8 5  - 9 . 2 5  - 2 . 6 0  
2PC 2 2 . 7 0  6 . 0 8  - 2 . 4 2  - 8 . 1 2  - 8 . 8 1  - 9 . 1 1  - 8 . 4 0  - 3 . 0 1  
2LM 1 9 . 4 3  2 . 2 5  - 6 . 3 2  - 9 . 7 2  - 7 . 0 9  - 3 . 1 7  1 . 9 4  7 . 3 0  
2L35 2 2 . 4 5  3 . 6 8  - 5 . 5 7  - 9 . 9 8  - 7 . 9 8  - 4 . 4 6  - 0 . 8 5  1 . 3 0  
2L75 1 9 . 0 2  2 . 0 5  - 6 . 3 3  - 9 . 6 7  - 6 . 5 0  - 2 . 8 0  2 . 3 0  6 . 6 6  

3PA0 0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
3 PAR 2 4 . 6 5  2 . 0 2  - 4 . 4 8  - 5 . 4 2  - 5 . 6 3  - 6 . 6 7  - 6 . 1 1  - 4 . 6 5  
3PC1 1 9 . 9 0  1 . 5 1  - 3 . 5 0  - 5 . 1 0  - 4 . 9 9  - 4 . 2 8  - 4 . 5 7  - 3 . 8 9  
3P05 2 8 . 2 2  1 . 6 7  - 4 . 7 1  — 6 . 4 1  - 7 . 2 5  - 7 . 8 8  - 6 . 9 9  - 2 . 9 5  
3P0 4 0 . 7 1  3 . 6 3  - 7 . 1 3  - 9 . 1 2  - 9 . 2 6  - 8 . 8 2  - 1 1 . 9 0  - 1 0 . 5 5  
3PM 5 . 0 4  6 . 7 7  3 . 0 9  - 4 . 5 1  - 6 . 9 6  - 6 . 4 1  — 4 . 8 0  4 . 2 3  
3PC 0 . 7 8  6 . 1 6  4 . 6 3  - 2 . 4 0  - 4 . 9 6  - 4 . 5 4  - 3 . 2 7  - 1 . 7 3  
3L35 2 0 . 0 7  5 . 8 7  - 1 . 1 5  - 4 . 7 0  - 7 . 0 8  - 8 . 0 3  - 8 . 3 1  - 6 . 0 0  
3L75 2 2 . 8 9  7 . 3 5  - 0 . 5 6  - 5 . 4 6  - 8 . 7 2  - 9 . 8 6  - 1 0 . 0 4  - 7 . 1 5  

lOPAO 0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
lOPAR 2 8 . 9 4  1 . 8 2  - 4 . 0 4  - 6 . 4 4  - 7 . 1 7  - 6 . 6 2  - 5 . 8 8  - 5 . 2 9  
lOPCl 1 9 . 4 9  6 . 4 3  - 1 . 1 6  - 5 . 9 9  - 6 . 6 2  - 6 . 2 3  - 6 . 4 7  - 6 . 2 5  
10P05 3 1 . 9 2  1 . 0 7  - 3 . 0 8  - 6 . 9 7  - 7 . 6 3  - 7 . 9 7  - 7 . 5 9  - 5 . 7 6  
lOPO 4 1 . 9 8  1 . 8 9  - 6 . 2 8  - 8 . 9 9  - 9 . 4 3  - 9 . 2 2  — 8 .  6 0  - 8 . 0 9  
10L35 7 6 . 7 5  1 . 5 4  - 1 0 . 4 2  - 1 5 . 0 7  - 1 6 . 3 7  - 1 6 . 1 0  - 1 6 . 0 0  - 1 8 . 2 6  

12PA0 0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  
12PAR 2 3 . 8 6  0 . 7 7  - 4 . 3 1  - 5 . 1 0  - 5 . 5 7  - 5 . 6 6  - 5 . 2 6  - 4 . 5 3  
12PC1 8 . 4 2  - 2 , 0 1  - 4 . 9 4  - 1 . 9 5  — 0 . 8 8  1 . 4 7  3 . 1 9  - 0 . 9 1  
12P05 2 4 . 9 3  0 . 9 6  - 3 . 7 1  - 4 . 3 9  - 6 . 7 1  - 6 . 8 9  - 6 . 0 4  - 5 . 1 1  
12P0 3 5 . 4 6  1 . 6 9  - 6 . 3 6  - 7 . 6 2  - 8 . 4 4  - 8 . 4 8  - 7 . 9 5  - 7 . 2 2  
12L35 1 5 . 5 5  1 . 2 2  - 2 . 6 0  - 4 . 5 8  - 5 . 1 0  - 4 . 5 6  - 2 . 5 5  0 . 2 3  
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Figure 11. Effects of TFOT and pressure-oxidation on HP-GPC profile of Project 10 asphalt 
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the increase in LMS rating upon aging, rather than the initial LMS rating, is a 

perfonnance predictor. 

Aging promotes intermolecular association and thus increases the LMS content 

and viscosity at the same time. However, the increase of both quantities is probably not 

the same for all asphalts, but rather may be inversely proportional to the compatibility of 

asphalt. To examine this hypotheses, the quantitative aspects of these mutual shifts are 

tabulated in Table 20. In this table, changes in the %LMS+MMS1 and log (viscosity at 

25''C), when the original asphalts (PAR) from 10 projects were pressure-oxidized for 46 

hrs (PO), are presented. The last column of this table contains the ratios between these 

changes. Eight samples out of 10 resemble each other regardless of their types and 

sources. However, two of these samples (Projects 2 and 7) differ significantly from the 

others, as the ratio for these samples is about half of that of the other eight samples. 

This observation suggests that the structural and/or compositional nature of the smaller 

molecular size components of some asphalts may tolerate increase of polar association 

more and may, thereby, reduce the rate of viscosity increase upon aging. These kinds of 

asphalts have been referred to as compatible asphalts [3,42,101]. 

3. Thermal analyses 

A total of 79 samples of virgin, laboratoiy aged, and recovered asphalts from 10 

different paving projects in Iowa were subjected to theimomechanical analysis (TMA) in 

the heating mode to determine their glass transition temperatures (T,). Figure 12 

illustrates how T, was determined. In addition to T,, three other parameters associated 



www.manaraa.com

Table 20. Effects of 46 hour pressure oxidative aging on LMS+MMSl and Log VIS25 

Project AC grade Source A(LMS+MMS1), % ALog VIS25 ALog VIS25/A(LMS+MMS1) 

4 AC-5 Koch, Dubuque 5.61 1.44 0.26 
5 AC-5 Koch, Dubuque 6.74 1.40 0.21 
7 AC-5 Koch, Algona 14.37 1.32 0.09 
8 AC-5 Koch, Algona 5.05 135 0.27 

1 AC-10 Koch, Algona 5.62 1.23 0.22 
11 AC-10 Koch, Algona 5.74 1.38 0.24 

2 AC-20 Koch, Tama 6.76 0.76 0.11 
3 AC-20 Koch, Dubuque 6.16 1.22 020 
10 AC-20 Jebro, Sioux City 5.77 1.26 0.22 
12 AC-20 Koch, Omaha, NE 5.17 1.29 0.25 
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with TMA theimograms were also determined for the above mentioned 79 samples. 

These are also illustrated in Figure 12 and are the following: 

1. ML: The slope of the initial straight line which measures the low-temperature 

thermal coefficient of expansion of the sample at the glassy state. This slope 

has been proposed as an index to predict the performance quality of an asphalt 

[60]. 

2. MH: The slope of the nearly straight adjacent section of the plot at higher 

temperature, which measures the coefficient of expansion above glass 

transition. 

3. Tsp: The softening temperature at which the displacement of the TMA probe reaches 

a maximum. 

These TMA parameters together with T, are given in Table 21. The glass 

transition temperature, T,, of the original asphalts ranged from -34®C to -22.5°C, 

increasing with viscosity from AC-5 to AC-20. In general, aging at high temperature 

(from PAO to PAR) reduced T,, Tq), ML, and MH while aging at low temperature 

(from P05 to PO) increased these thermal responses. This different trend of thermal 

responses suggests a different aging mechanism for materials aged at different 

temperatures. 

Glass transition temperatures of 12 asphalts used in the preliminary study were 

also determined by TMA and these data are compared with DSC results in Table 22. A 

weak correlation was observed between the glass transition temperatures determined by 

the two methods. The coefficient determination was 0.35, significant at 5% level. 
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Table 21. Sutnmaiy of TMA results 

Sample T, Tsp ML MH 
ID *C «C pm/*C pm/"C 

(AC-5s) 
4PA0 - 3 1 . 3  7 . 0  0 . 1 7 6  0 . 4 6 6  
4PAR - 3 0 . 3  5 . 0  0 . 1 8 9  0 . 4 4 1  
4PC1 - 3 7 . 7  3 . 9  0 . 1 2 7  0 . 5 5 9  
4P05 - 2 8 . 8  7 . 3  0 . 1 3 2  0 . 4 2 2  
4P0 - 2 7 . 3  1 3 . 0  0 . 2 1 3  0 . 5 3 2  
4PM - 2 9 . 5  6 . 0  0 . 1 5 8  0 . 4 4 1  
4PC - 2 9 . 3  8 . 0  0 . 2 4 9  0 . 5 1 2  
4L35 - 3 3 . 5  7 . 0  0 . 1 6 2  0 . 5 4 7  
4L75 - 3 3 . 3  1 2 . 5  0 . 1 6 2  0 . 4 8 7  

5PA0 - 3 0 . 0  1 4 . 5  0 . 1 4 9  0 . 5 1 0  
5PAR - 3 6 . 3  7 . 0  0 . 0 3 9  0 . 4 0 7  
5PC1 - 3 6 . 7  6 . 9  0 . 0 4 7  0 . 4 3 3  
5P05 - 3 2 . 4  6 . 3  0 . 1 4 8  0 . 5 0 7  
5P0 - 3 4 . 0  1 3 . 0  0 . 1 6 2  0 . 5 0 3  
5PM - 3 1 . 3  5 . 0  0 . 1 0 6  0 . 4 5 1  
5L35 - 3 0 . 5  1 0 . 5  0 . 1 6 0  0 . 5 6 1  
5L75 - 3 2 . 5  1 0 . 5  0 . 1 6 7  0 . 5 1 0  

7PA0 - 3 4 . 0  1 5 . 0  0 . 1 9 5  0 . 4 9 4  
7PAR - 2 6 . 8  1 0 . 5  0 . 2 1 5  0 . 5 7 1  
7PC1 - 3 6 . 5  5 . 2  0 . 0 5 1  0 . 3 8 0  
7P05 - 2 9 . 4  7 . 0  0 . 1 9 3  0 . 4 5 2  
7P0 - 2 8 . 5  1 4 . 5  0 . 2 3 1  0 . 5 7 7  
7L35 - 3 1 . 0  3 . 0  0 . 2 4 9  0 . 6 0 3  
7L75 - 3 7 . 0  1 2 . 5  0 . 2 2 5  0 . 6 1 8  

8PA0 - 2 6 . 8  1 5 . 0  0 . 2 0 9  0 . 5 7 7  
8PAR - 2 9 . 9  1 2 . 0  0 . 2 6 4  0 . 6 9 5  
8PC1 - 3 2 . 1  4 . 2  0 . 0 7 9  0 . 3 3 1  
8P05 - 2 9 . 2  6 . 8  0 . 1 4 1  0 . 4 6 4  
8P0 - 3 0 . 9  1 2 . 5  0 . 1 7 4  ,  0 . 3 9 2  
8L35 - 3 2 . 0  9 . 5  0 . 1 1 3  0 . 4 4 1  
8L75 - 3 3 . 3  7 . 0  0 . 2 4 0  0 . 6 3 0  

(AC-lOs) 
IPAO - 3 3 . 0  - 4 . 0  0 . 0 9 4  0 . 2 9 9  
IPAR - 2 2 . 5  1 4 . 0  0 . 2 0 8  0 . 6 8 2  
IPCl - 3 5 . 3  1 0 . 1  0 . 1 8 2  0 . 3 7 4  
1P05 - 3 0 . 9  1 2 . 2  0 . 1 0 5  0 . 4 3 5  
IPO - 2 7 . 5  1 2 . 5  0 . 2 6 4  0 . 6 4 7  
1PM - 3 1 . 9  1 2 . 0  0 . 2 3 5  0 . 5 6 6  
1L35 - 2 8 . 0  2 5 . 0  0 . 2 4 9  0 . 4 8 3  
1L75 - 2 8 . 0  1 4 . 5  0 . 2 1 6  0 . 4 7 7  
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Sample T, Tsp ML MH 
ID °C *C pm/°C pm/°C 

IIP AO - 2 7 . 5  3 . 5  0 . 1 2 6  0 . 4 8 8  
IIPAR - 2 8 . 0  1 2 . 0  0 . 2 5 9  0 .  6 8 7  
llPCl - 3 4 . 9  4 . 5  0 . 1 3 9  0 . 4 5 4  
11P05 - 2 9 . 8  9 . 4  0 . 1 8 2  0 . 3 8 6  
IlPO - 2 4 . 0  1 3 . 5  0 . 1 8 0  0 . 4 5 1  
11L35 - 3 4 . 0  4 . 0  0 . 2 5 1  0 . 7 3 2  
11L75 - 2 5 . 5  2 5 . 0  0 . 1 4 1  0 . 5 0 5  

(AC-20S) 
2 PAO - 2 5 . 0  1 7 . 5  0 . 1 6 7  0 . 4 7 7  
2 PAR - 2 8 . 5  1 6 . 0  0 . 2 4 0  0 . 5 0 8  
2PC1 - 3 0 . 6  1 4 . 9  0 . 2 1 3  0 . 3 8 0  
2P05 - 2 9 . 0  1 5 . 5  0 . 2 6 8  0 . 4 9 0  
2P0 - 2 8 . 3  2 5 . 0  0 . 2 3 1  0 . 4 8 1  
2PM - 2 7 . 8  1 7 . 5  0 . 2 2 4  0 . 5 1 4  
2PC - 3 2 . 5  1 8 . 0  0 . 2 3 5  0 . 5 0 3  
2LM - 2 9 . 9  1 2 . 0  0 . 2 6 0  0 . 5 0 3  
2L35 - 3 3 . 3  1 7 . 5  0 . 2 4 4  0 . 4 4 0  
2L75 - 3 3 . 9  1 9 . 5  0 . 1 3 8  0 . 4 2 9  

3PA0 - 2 2 . 5  1 2 . 0  0 . 1 1 7  0 . 4 9 9  
3PAR - 2 7 . 0  7 . 0  0 . 1 5 4  0 . 3 6 7  
3PC1 - 3 4 . 4  7 . 0  0 . 1 1 4  0 . 4 0 4  
3P05 - 2 4 . 5  1 2 . 2  0 . 1 9 8  0 . 4 3 1  
3P0 - 2 2 . 0  1 7 . 5  0 . 2 3 1  0 . 5 4 5  
3PM - 2 9 . 4  1 7 . 5  0 . 2 1 4  0 . 5 1 0  
3PC - 3 3 . 0  1 2 . 5  0 . 1 8 6  0 . 4 6 5  
3L35 - 2 7 . 5  1 6 . 0  0 . 2 2 0  0 . 5 2 1  
3L75 - 2 5 . 3  2 5 . 0  0 . 2 1 1  0 . 5 0 7  

lOPAO - 2 3 . 5  1 3 . 0  0 . 2 0 4  0 . 5 2 3  
lOPAR - 2 2 . 5  1 3 . 5  0 . 2 4 4  0 . 6 0 1  
lOPCl - 3 4 . 9  8 . 8  0 . 1 0 9  0 . 3 7 5  
10P05 - 2 7 . 8  9 . 2  0 . 1 0 9  0 . 3 8 8  
lOPO - 2 8 . 5  1 4 . 0  0 . 2 1 2  0 . 5 0 8  
10L35 - 3 1 . 0  1 5 . 0  0 . 2 4 5  0 . 4 7 7  
10L75 - 3 2 . 0  1 9 . 5  0 . 1 6 0  0 . 4 4 4  

12PA0 - 2 4 . 0  1 3 . 0  0 . 2 2 2  0 . 6 2 5  
12PAR - 2 5 . 0  1 1 . 5  0 . 1 9 5  0 . 5 2 1  
12PC1 - 3 0 . 1  1 1 . 0  0 . 1 2 3  0 . 4 0 2  
12P05 - 2 3 . 1  1 3 . 4  0 . 2 1 1  0 . 4 8 3  
12P0 - 2 1 . 5  2 5 . 0  0 . 2 0 3  0 . 5 5 4  
12L35 - 2 8 . 0  2 5 . 0  0 . 2 6 8  0 . 6 5 7  
12L50 - 2 7 . 3  1 2 . 5  0 . 1 8 2  0 . 5 2 1  
12L75 - 2 8 . 3  1 1 . 5  0 . 1 9 1  0 . 5 2 5  
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Table 22. Glass transition temperature by TMA and DSC 

DSC TMA 

Sample T, AH T, 
ID "C J/g «C 

J0502-0 -29.0 10.3 -29.0 
J0502-R -30.0 15.0 -30.1 

K0501-0 -26.0 8.2 -30.0 
K0501-R -26.0 8.8 -32.1 

JlOOl-0 -30.0 11.2 -27.8 
JlOOl-R -31.0 13.9 -29.5 

KlOOl-O -31.0 6.9 -31.0 
KlOOl-R -30.0 7.5 -32.5 

J2001-0 -35.0 11.4 -28.8 
J2001-R -35.0 9.7 -35.0 

K2001-0 -25.0 5.7 -25.2 
K2001-R -22.0 4.8 -25.0 
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Inclusion of the enthalpy change did not improve the relationship (i^ = 0.36). 

The correlation between TMA parameters and other properties will be discussed 

in Section 7. 

4. NMR 

The samples studied by nuclear magnetic resonance (NMR) spectroscopy were 

the original asphalt J1002-0, its oven treated version J1002-R, the core sample Sugar 

Creek binder, and the Wood River binder. The "C NMR and the 'H NMR spectra of 

these samples are shown in Figure 13 and Figure 14, respectively. Tlie "C NMR 

spectra indicate that the line-width of the Sugar Creek sample is significantly larger than 

those of other samples meaning that this sample is considerably more rigid than the 

others. Tlie 'H NMR spectra indicate that oven aging decreases the amount of aliphatic 

quaternary carbon in the virgin asphalt and also indicate that the quaternary carbon 

content of tlie Sugar Creek sample is much less than those of all other three samples as 

shown in Figure 14. 

Other NMR procedures investigated are as follow. Efforts were made to ligate 

the asphalt samples with the phosphorus marker. However, a lack of useful results 

suggests that the small amount of heteroatoms in asphalt made this a nonviable 

teclinique. Solution "C NMR spectra of the Sugar Creek binder, the Wood River 

binder, 7PAO, and 7P0 did not indicate any significant difference among them. The 

spectra of the n-pentane insoluble asphaltenes of 7PA0 and 7P0 showed no significant 

difference between them either. Removal of the n-pentane soluble portion of asphalts 
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only Increased the intensities of aromatic peaks relative to aliphatic peaks. Solvent 

effects were examined by using three different solvents, deutrated chloroform, deutrated 

tetrahydrofuran, and deutrated toluene; however, no noticeable effect on "C solution 

NMR was found. Measurement of relaxation constant, T,p, indicated that 7P0 with T,p 

of 1.50 ms was slightly harder than 7PA0 with T,p of 1.40 ms. However, this 

difference could not be considered as significant when tlie instrumental error was 

considered. 

Tlie application of the NMR technique to study asphalt has been found to be 

useful [38,88,102]. However, due to the nature of asphalt, a complex mixture of many 

different molecular structures, characterizing asphalt using the NMR technique seems to 

be problematic for engineers who do not have the necessary expertise. 

5. Water sensitivity of mixes 

As an indirect performance measurement of each project, resistance to moisture-

induced damage of one year old cores was evaluated by using the retained tensile 

strength ratio and the retained resilient modulus ratio after accelerated Lottman moisture 

conditioning. The results are presented in Table 23. The cores taken from project 11 

showed the least resistance to moisture induced damage in terms of retained resilient 

modulus (RM) and retained indirect tensile strength (ITS). Also, the cores taken from 

project 10, with the highest air void percentage among those of all the projects, could be 

considered as susceptible to moisture damage in terms of retained indirect tensile 

strength. 
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Table 23. Water sensitivity of one year old core samples 

Project % Air Void RM ratio ITS ratio 

(AC-5) 

4 5.26 1.05 0.93 
5 4.91 0.95 0.95 
7 2.81 1.29 1.26 
8 2.77 1.38 1.31 

(AC-10) 

1 3.83 1.10 1.16 
11 4.04 0.39 0.52 

(AC-20) 

2 6.43 0.96 1.05 
3 5.52 1.10 1.09 

10 7.19 1.04 0.75 
12 5.46 1.26 1.00 
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Accelerated moisture conditioning is expected to reduce the structural soundness 

of specimens. However, as seen in Table 23, some specimens showed increased RM 

and ITS (e.g., larger than a ratio of 1). This increase also has been observed in another 

study [66]. This phenomenon could be explained by the contribution of water trapped in 

the pores of a mix. During the severe vacuum saturation procedure, most pores of a 

mix would be filled with water. If the mix survives the moisture conditioning 

procedure, the water trapped in the pores would behave as a structurally reinforcing 

material during RM and ITS measurements. 

6. Aaing characteristics 

Levels of aging or property changes due to the thin film oven test (TFOT) were 

compared with those due to actual construction operations. This was done by comparing 

the rheological properties of TFOT residues (PAR), asphalt samples recovered from 

plant mixes (PM), cores taken right after construction (PC), and lab mixes (LM). In 

general, TFOT caused more hardening for softer asphalts (AC-5) than for harder asphalts 

(AC-10 or AC-20). In AC-20 asphalts, TFOT caused about the same hardening as hot 

mixing in terms of P5, P25, P4, and VIS25. However, in other properties, TFOT caused 

larger changes than the hot mixing process. Examination of CF and SI revealed that 

TFOT residues showed less hardening (higher CF and lower SI) than asphalts mixed and 

recovered (PM, PC, and LM). 

Pressure-oxidation treatment for S hours and 46 hours is considered to be 

equivalent to 1 year and 5 years, req>ectively, of field aging under Iowa climatic 
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coiulitions. Based on data derived from these tests, ideological properties and HP-GPC 

parameters were predicted for 10, 20, and 30 year Held service using the method 

suggested by Brown et al. [IS] as given in Tables 24 and 25. 

Predictive equations of penetration at 4*C and R&B softening point for AC-5 

asphalts were plotted in Figures IS and 16. In some cases, the prediction based on two 

point measurements resulted in mathematical expressions which were physically 

meaningless. As can be seen from Table 24, changes in penetrations at S and 4°C with 

tune were in similar pattern for all asphalt samples. In terms of peneration at 2S°C, the 

asphalt sample from project 7 showed the biggest age-hardening for prediction of 10 

year service (YIO). For predictions of S and 10 year services (YS and YIO), asphalt 

samples from projects 2 and 3 showed the greatest hardening in terms of ring and ball 

softening point, sample from project 12 became the most viscous at 2S°C, and sample 

from project 2 was the most viscous at 60 and 13S°C. In this study, as will be 

discussed later, it was found that the percentage of the second and seventh size fractions 

(X2 and X7) of HP-GPC profiles, based on the 8-slice method, were very closely related 

to most asphalt properties. Table 25 gives the predicted percentage of these two slices 

along with that of XI. The project 2 asphalt will yield high XI and X2 values and the 

lowest X7 value based on the long term prediction. This prediction indicates that this 

asphalt would become too stiff to perform well. Predicted values for the project 3 

asphalt gave the highest XI and the second lowest X7 after 10 year field service. Tlie 

asphalt used in the project 12 gave the highest X2 at the ultimate stage. These three 

asphalts could be categorized as susceptible asphalts, especially as far as low 
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Tflble 24. Predicted rheological properties from lab aging test 

Project PAO PCI Y1 Y5 YIO Y20 Y30 Ult.Proi 

Penetration at 5'C, 1/10 mm 
4  1 9  1 1  1 1  1 0  1 0  1 0  1 0  1 0  
5  1 8  1 1  —— 1 1  —— — —  —— — —  

7  1 6  1 4  1 1  1 0  1 0  1 0  9  9  
8  1 7  1 5  1 1  1 0  1 0  1 0  1 0  1 0  
1  8  7  6  6  6  6  6  6  
1 1  1 5  1 1  8  7  7  7  7  7  
2  7  7  5  6  6  6  6  6  
3  9  1 1  5  6  6  6  6  6  
1 0  9  6  5  5  5  5  5  5  
1 2  8  9  5  4  4  4  3  3  

Penetration at 25®C, 1/10 mm 
4 181 9 8  8 6  5 2  3 1  1 2  3  
5 191 8 3  —— 5 3  —— —— —— 

7 193 105 8 4  4 6  3  —— —— —— 

8 196 107 8 3  4 6  1 5  — — — — 

1  8 2  5 2  4 4  2 7  1 4  1  —— —— 

11 133 9 1  5 8  3 5  2 3  1 3  9  —— 

2  5 4  4 5  3 6  2 5  — — — — — — 

3  7 5  8 9  4 1  2 6  1 8  1 1  8  1  
1 0  8 2  3 6  4 0  2 4  1 5  7  3  —— 

1 2  8 2  6 7  4 0  2 3  1 3  3  — — — 

Penetration at 4®C, 1/10 mm 
4  6 4  3 5  3 1  2 5  2 4  2 3  2 3  2 3  
5  6 8  3 3  — — 2 5  — — — — — 

7  6 0  4 1  3 2  2 4  2 1  1 9  1 9  1 7  
8  5 8  4 3  3 0  2 5  2 4  2 3  2 3  2 3  
1  2 9  2 1  1 6  .  1 4  1 4  1 3  1 3  1 3  
1 1  4 4  3 6  2 4  2 1  2 0  2 0  2 0  2 0  
2  1 5  1 9  1 4  1 4  1 4  1 4  1 4  1 4  
3  3 0  3 6  1 6  1 4  1 4  1 3  1 3  1 3  
1 0  2 9  1 8  1 6  1 4  1 4  1 3  1 3  1 3  
1 2  2 8  2 7  1 5  1 4  1 4  1 4  1 4  1 4  

R&B softening point, ° c  
4  4 1 . 5  4 4 . 6  4 8 . 8  5 4 . 0  5 6  5 8  5 8  6 0  
5  4 1 . 5  4 9 . 3  — — 5 4 . 0  —— — — — — — — 

7  3 9 . 0  4 5 . 3  4 9 . 3  5 6 . 0  5 8  5 9  6 0  6 1  
8  3 8 . 5  4 4 . 5  5 0 . 2  5 6 . 0  5 8  6 0  6 1  6 2  
1  4 7 . 5  5 1 . 4  5 4 . 1  6 1 . 5  6 9  8 0  8 8  — — 

1 1  4 4 . 0  4 9 . 0  5 3 . 2  5 9 . 5  6 7  8 0  9 2  — — 

2  4 9 . 0  5 5 . 8  5 2 . 6  6 7 . 0  — — — —» —— 

3  4 7 . 0  4 7 . 2  5 5 . 8  6 3 . 0  8 5  — — — — 

1 0  4 9 . 0  5 9 . 0  5 6 . 5  6 2 . 5  6 4  6 5  6 6  6 7  
1 2  4 7 . 0  4 9 . 6  5 6 . 2  6 3 . 0  6 8  7 2  7 4  8 0  



www.manaraa.com

124 

Table 24. continued 

Project PAO PCI Y1 Y5 YIO Y20 Y30 Ult.Prop. 

Viscosity at 25''C, x 10,000 Pa s 
4  1 . 5  9 . 0  1 1 . 1  4 1 . 5  
5  1 . 9  1 6 . 0  — 4 7 . 5  — —  — —  — 

7  2 . 5  5 . 4  1 5 . 0  5 2 . 5  134 1230 — —  — —  

8  1 . 9  7 . 0  1 1 . 0  4 2 . 0  —  —  —  —  — —  — —  

1  9 . 1  3 2 . 0  6 5 . 0  1 5 5 . 0  227 309 3 5 5  515 
1 1  4 . 0  1 0 . 9  2 5 . 7  9 5 . 0  — —  — —  — —  — —  

2  3 4 . 0  4 3 . 0  8 0 . 0  1 9 5 . 0  
3  1 1 . 7  1 4 . 5  5 7 . 0  1 9 4 . 0  892 — —  — —  — —  

1 0  1 0 . 1  7 1 . 0  6 0 . 0  1 8 5 . 0  520 — —  — —  —  —  

1 2  1 0 . 4  2 7 . 0  6 5 . 0  2 0 5 . 0  1010 — —  — —  

Viscosity at ôO'C, x 100 Pa s 
4  0 . 5 8  1 . 7 3  2 . 0 5  4 . 6 8  1 1 . 7  —- — —  — —  

5  0 . 6 3  2 . 3 5  —  —  4 . 5 1  
7  0 . 7 3  0 . 8 5  2 . 3 7  6 . 3 8  2 5 . 7  — —  —  —  

8  0 . 6 7  1 . 2 8  2 . 4 3  5 . 0 8  9 . 1  2 1 . 0  4 4 . 1  — —  

1  1 . 5 8  4 . 0 2  5 . 6 0  1 3 . 2 1  2 2 . 9  4 3 . 0  6 4 . 0  — —  

1 1  1 . 1 1  2 . 0 2  4 . 6 0  1 0 . 4 3  2 6 . 2  — 

2  3 . 5 7  5 . 4 9  1 0 . 9 8  3 9 . 7 2  1 5 1 . 0  —  —  —  —  

3  2 . 7 3  2 . 4 9  8 . 9 5  2 1 . 4 1  4 0 . 0  9 2 . 2  1 8 3 . 4  — —  

1 0  2 . 1 1  1 4 . 5 5  7 . 9 8  1 8 . 3 6  6 3 . 6  —  —  — — —  

1 2  2 . 3 4  2 . 5 4  9 . 5 4  2 2 . 6 2  4 1 . 4  8 9 .  9  1 6 2 . 2  

Viscosity at 135°C, 10^ mVs 
4  2 5 0  343 394 553 1219 — — —  —  —  

5  2 4 8  5 4 0  —  —  500 
7 251 3 4 6  414 619 —  —  —  —  — —  

8 253 3 8 0  4 2 9  5 5 0  7  9 3  2 7 0 7  — —  

1  3 6 9  581 552 7 8 8  1917 — —  — —  —  —  

1 1  4 4 4  4 5 2  592 7 7 0  1210 —  —  — —  — —  

2  8 8 9  817 1 0 8 0  1655 3891 —  —  — —  

3  4 7 7  4 9 5  810 1202 1702 2 7 4 2  3837 — —  

10 460 1030 7 9 9  1091 1530 2 7 8 9  5078 — —  

1 2  4 7 0  4 4 0  828 1140 2132 — — 
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Table 25. Predicted HP-OPC properties from lab aging test 

Project PAO PCI Y1 Y5 YIO Y20 Y30 Ult.Prop 

XI, 8-slice, % 
4  1 3 .  8 0  1 6 . 6 9  1 8 . 7 1  1 9 . 2 0  1 9 . 3  1 9 . 3  1 9 . 4  1 9 . 4  
5  1 3 . 3 0  1 5 . 7 7  — 1 9 . 5 2  — — — — —  — 

7  7 . 3 9  1 3 . 8 1  1 7 . 1 1  1 9 . 2 9  2 0 . 6  2 1 . 8  2 2 . 3  2 3 . 8  
8  1 3 . 2 4  1 7 . 3 7  1 7 . 0 2  1 8 . 2 7  1 9 . 4  2 0 . 8  2 1 . 6  2 5 . 1  
1  1 1 .  6 5  1 4 . 2 4  1 4 . 4 4  1 6 . 0 4  1 7 . 3  1 8 . 6  1 9 . 3  2 1 . 6  
1 1  1 3 . 2 5  1 7 . 7 2  1 7 . 5 0  1 8 . 7 1  1 9 . 5  2 0 . 2  2 0 . 5  2 1 . 5  
2  1 4 . 8 7  1 7 . 9 5  1 8 . 2 2  2 0 . 5 3  — — —- — 

3  1 4 . 3 2  1 7 . 1 7  1 8 . 3 6  2 0 . 1 5  2 1 . 9  2 4 . 5  2 6 . 3  3 6 . 0  
1 0  1 3 . 4 6  1 6 . 0 8  1 7 . 7 5  1 9 . 1 0  2 0 . 4  2 2 . 1  2 3 . 3  2 8 . 6  
1 2  1 4 . 3 4  1 5 . 5 5  1 7 . 9 1  1 9 . 4 2  — —  — — 

X2, 8-slice, % 
4  1 4 . 6 8  1 5 . 6 5  1 4 . 7 4  1 5 . 0 7  1 5 . 0  1 5 . 0  1 5 . 0  1 5 . 0  
5  1 4 . 4 2  1 6 . 3 0  — 1 5 . 0 4  — — — — —  —  

7  1 2 . 7 8  1 5 . 4 0  1 5 . 0 4  1 5 . 1 1  1 5 . 1  1 5 . 1  1 5 . 1  1 5 . 1  
8  1 4 . 8 3  1 5 . 9 5  1 5 . 0 2  1 5 . 0 4  1 5 . 1  1 5 . 1  1 5 . 1  1 5 . 1  
1  1 3 . 4 4  1 5 . 6 6  1 4 . 3 2  1 4 . 6 6  1 4 . 8  1 4 . 9  1 5 . 0  1 5 . 1  
1 1  1 4 . 8 8  1 5 . 0 9  1 5 . 2 3  1 5 . 3 1  1 5 . 4  1 5 . 4  1 5 . 4  1 5 . 5  
2  1 6 . 4 2  1 6 . 8 5  1 7 . 2 0  1 7 . 6 1  1 7 . 9  1 8 . 1  1 8 . 3  1 8 . 6  
3  1 5 . 1 3  1 5 . 3 6  1 5 . 3 8  1 5 . 6 8  1 5 . 6  1 5 . 6  1 5 . 6  1 5 . 5  
1 0  1 5 . 0 4  1 6 . 0 0  1 5 . 2 0  1 5 . 3 2  1 5 . 3  1 5 . 3  1 5 . 3  1 5 . 3  
1 2  1 5 . 2 9  1 4 . 9 8  1 5 . 4 3  1 5 . 5 4  1 5 . 7  1 5 . 9  1 6 . 1  1 9 . 5  

X7, 8-slice, % 
4  7 . 8 7  6 .  9 6  7 . 2 7  7 . 2 4  7 . 2  7 . 2  7 . 2  7 . 2  
5  8 . 0 6  6 . 3 6  — 7 . 1 8  — — — — —— — — 

7  1 0 . 2 1  6 .  9 5  7 . 3 4  7 . 1 5  7 . 1  7 . 1  7 . 1  7 . 1  
8  7 . 8 5  7 . 0 1  7 . 3 7  7 . 2 9  7 . 3  7 . 3  7 . 3  7 . 3  
1  8 . 1 6  7 . 2 8  7 . 5 2  7 . 2 3  7 . 1  7 . 1  7 . 1  7 . 0  
1 1  7 . 7 5  7 . 1 7  7 . 1 4  7 . 0 6  7 . 1  7 . 0  7 . 0  7 . 0  
2  5 . 9 2  5 . 7 4  5 . 3 9  5 . 0 9  4 . 9  4 . 6  4 . 5  4 . 0  
3  7 . 2 7  6 .  9 4  6 . 7 6  6 . 4 0  5 . 4  — —  — — — — 

1 0  7 . 4 6  6 . 9 8  6 . 9 0  6 . 8 2  6 . 8  6 . 8  6 . 8  6 . 8  
1 2  7 . 2 7  7 . 5 0  6 . 8 3  6 . 6 9  6 . 6  6 . 5  6 . 5  6 . 4  

XI + X2, 8-slice, % 
4  2 8 . 4 8  3 2 . 3 4  3 3 . 4 5  3 4 . 2 7  3 4 . 3  3 4 . 3  3 4 . 4  3 4 . 4  
5  2 7 . 7 2  3 2 . 0 7  —  —  3 4 . 5 6  — — — — — — 

7  2 0 . 1 7  2 9 . 2 1  3 2 . 1 5  3 4 . 4 0  3 5 . 7  3 6 . 9  3 7 . 5  3 9 . 0  
8  2 8 . 0 7  3 3 . 3 2  3 2 . 0 4  3 3 . 3 1  3 4 . 4  3 5 . 8  3 6 . 7  4 0 . 1  
1  2 5 . 0 9  2  9 .  9 0  2 8 . 7 6  3 0 . 7 0  3 2 . 1  3 3 . 5  3 4 . 3  3 6 . 7  
1 1  2 8 . 1 3  3 2 . 8 1  3 2 . 7 3  3 4 . 0 2  3 4 . 8  3 5 . 6  3 6 . 0  3 7 . 0  
2  3 1 . 2 9  3 4 . 8 0  3 5 . 4 2  3 8 . 1 4  — — — — 

3  2 9 . 4 5  3 2 . 5 3  3 3 . 7 4  3 5 . 8 3  3 7 . 5  4 0 . 1  4 1 . 8  5 1 . 5  
1 0  2 8 . 5 0  3 2 . 0 8  3 2 . 9 5  3 4 . 4 2  3 5 . 7  3 7 . 5  3 8 . 6  4 3 . 9  
1 2  2  9 . 6 3  3 0 . 5 3  3 3 . 3 4  3 4 . 9 6  —  —  — —  —  —  — 
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Figuie 15. Predictive penetration at 4''C versus time 
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Figure 16. Predictive ring and bail softening point versus time 
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-temperature cracking properties are concerned. 

Generally, an asphalt in a mix with high air voids ages faster than an asphalt in a 

mix with low air voids. In this study, air voids of lab mixes, compacted by 75 blows 

per side (L75 mixes), ranged from 3.37 to 7.11% and air voids of mixes, compacted by 

35 blows per side (L35 mixes), ranged from 6.57 to 9.69%. The L75 mixes had 0.58 to 

4.08% less air voids than the L35 mixes. The overall relationship between air voids and 

age hardening, as determined by penetrations and viscosities, was not consistent. The 

level of aging for recovered asphalts from L35 and L75 mixes were about the same in 

terms of penetrations and viscosities, except for the sample from project 10. In this 

aging test on compacted mixes, aging measurement involved several procedures,e.g., 

mixing, compaction, aging, extraction, and recovery using an organic solvent. Because 

of this long procedure, it is likely that the laboratory measurement of aging using 

compacted mixes will contain more unknown variability than a laboratory aging test 

using neat asphalt. 

The rheological properties of TFOT residues (PAR) and recovered asphalts after 

one year of field aging (PCI) are compared in Tables 11 and 12. The recovered 

asphalts of the projects 4, 5, and 10 were found to have aged more than the related 

TFOT residues in all properties. The recovered asphalts from the rest of the projects 

were aged less than the related TFOT residues in all properties except CF and SI. As 

seen in Table 23, the cores from these three projects showed the highest air voids 

among the projects of the same grade of asphalt. This observation is in agreement with 

Goode and Lufsey's conclusion [33] that air permeability, air voids, and asphalt film 
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thickness were major factors affecting age hardening of asphalt pavement. 

In terms of rheological properties, asphalts pressure-oxidized for 5 hours (P05) 

had aged more severely than asphalts recovered from one year old cores (PCI). The 

order of aging for an asphalt, in general, was PAO < PCI < P05 < PO in terms of 

rheological and HP-GPC properties. However, in TMA, only three aged asphalts 

showed a general trend as PCI < P05 < PO in terms of T,, Tsp, and ML. 

Previous studies have shown that the aging characteristics of asphalt during high 

temperature plant mixing (short-term aging), as with TFOT, may or may not reflect the 

aging characteristics of asphalt during low temperature aging in pavement (long-term 

aging) and in low temperature pressure-oxidation tests. This is demonstrated in Figure 

17, in which the long term rate of age-hardening or long term aging index (defined as 

the ratio of the viscosity of 46 hour pressure-oxidized asphalt (PO) detennined at 60°C 

to the viscosity of TFOT residue (PAR) at 60°C) is compared with the short-term aging 

index (which is the ratio of viscosity of PAR at 60°C to viscosity of PAO at 60®C). 

Tlie project 2 asphalt showed a drastic difference between short-term and long-term 

aging indices; it was the least aged in terms of short-term aging index and the most aged 

in terms of long-temi aging index. 

7. Correlations 

In this section, the discussion will be confined to correlations among physical 

properties, TMA parameters, and HP-GPC parameters of all samples related to the 10 

projects. 
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Figure 17. Short-teim and long-teim aging indices 
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Regression analyses were performed among physical parameters, TMA 

parameters, and molecular weight profile derived from HP-GPC tests. Table 26 gives 

the results of regression analyses between TMA parameters and HP-GPC parameters for 

73 samples. The results indicate that TMA parameters, Tq) and ML, correlate with HP-

GPC parameters, obtained using the 8-slice method, fairly well. Results of multiple 

linear regression between physical properties and TMA parameters are given in Table 

27. These results show significant correlations between TMA parameters and almost all 

the physical properties with the exception of temperature susceptibility. Among the 

temperature susceptibility parameters only penetration ratio (PR) and penetration-

viscosity number at 60®C (PVN60) significantly correlate with Tsp and ML. Tsp also 

correlates well with both rheological and low-temperature properties while T, correlates 

well only with low-temperature properties. Between the two expansion slopes defined in 

a TMA thermogram, the low temperature expansion slope, ML, appears to be a better 

predictor for rheological properties than MH. Results from the multiple linear 

regression analyses performed between physical properties and HP-GPC parameters are 

given in Table 28. Molecular size distributions are best characterized by the 8-slice 

method thus correlating well with almost all physical properties. These results support 

findings by others [29,61] that molecular size profiles derived from HP-GPC can be 

used to predict many physical properties. However, HP-GPC parameters do not 

correlate well with temperature susceptibility in terms of PI, CN, and VTS. 

Both TMA and HP-GPC parameters were significantly related to Geological 

properties while TMA parameters and HP-GPC parameters had less significant 
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Table 26. Regression analyses between TMA and HP-GPC parameters (n=73) 

Dependent LMS+MMSl LMS 3-SUCE 
Variables P-value P-value r' P-value 1^ 

T, 0.3710 0.011 0.1655 0.027 0.7365 0.018 
Tsp 0.0022 0.124 0.1233 0.033 0.0160 0.138 
ML 0.0475 0.054 0.1597 0.028 0.1046 0.085 
MH 0.6908 0.002 0.8232 0.001 0.2022 0.064 

Dependent 
Variables 

4-SUCE 
P-value r^ 

8-SUCE 
P-value 

MWT+POLYIDX 
P-value 

T, 
Tsp 
ML 
MH 

0.3455 0.063 
0.0081 0.181 
0.0517 0.127 
0.3904 0.058 

0.0381 0.216 
0.0033 0.292 
0.0037 0.289 
0.3786 0.120 

0.3836 0.027 
0.0004 0.202 
0.1665 0.050 
0.4485 0.023 

Dependent 
Variables Selected variables by stepwise regression 

Tg None 
Tsp LMS+MMS1, MMS1, X2, MWT, POLYIDX 
ML MMS2, LMS, MMS2, X5, MWT 
MH None 
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Table 27. Regression analyses between Physical properties and TMA parameters (n=80) 

Selected 
Dependent Tg Tsp ML MH All 4 Parameters variables 
Variables P—value r^ P—value r^ P—value r^ P—value r^ P—value r^ from stepwise 

regression 

Rheolo^cal propeities 

P5 0 .0003 0 .152 0 .0001 0 .228 0 .0106 0 .081 0 ,6021 0 ,004 0 ,0001 0 ,357 ALL 
P25 0 .0125 0 .077 0 .0001 0 .207 0 ,0027 0 .110 0 .9885 0 ,000 0 ,0001 0 ,292 Tsp 
P4 0 .0016 0 .121 0 .0001 0 .246 0 ,0057 0 .094 0 .8209 0 ,001 0 ,0001 0 ,340 ALL 
VIS25 0 .0037 0 .103 0 .0001 0 .399 0 ,0003 0 .157 0 .7735 0 .001 0 ,0001 0 ,474 Tsp 
CF 0 .9515 0 .000 0 .0001 0 .249 0 ,0001 0 .173 0 .7922 0 .001 0 ,0001 0 .487 ALL 
SI 0 .9571 0 .000 0 .0001 0 .249 0 .0013 0 .125 0 .5032 0 .006 0 ,0001 0 .465 ALL 
VIS60 0 .2055 0 .020 0 .0001 0 .297 0 .0009 0 .133 0 .6978 0 ,002 0 ,0001 0 .430 Tsp, ML, MH 
VIS135 0 .0520 0 .048 0 .0001 0 .358 0 .0001 0 .173 0 .7772 0 ,001 0 ,0001 0 ,508 Tsp, ML, MH 
SP 0 .0372 0 .054 0 .0001 0 .336 0 .0003 0 .158 0 .8249 0 ,001 0 ,0001 0 .426 Tsp, ML, MB 

Tempeiatme sasoeptibOity 

PR 0. 5794 0 .004 0 .0004 0 .150 0 ,0008 0 .135 0 .4413 0 .008 0 .0002 0 .249 
PI 0. 1248 0 .030 0 .1208 0 .031 0 ,3939 0 .009 0 .6061 0 ,003 0 ,0569 0 .114 
CN 0. 8330 0 .001 0 .0376 0 .054 0 ,0960 0 .035 0 .6208 0 .003 0 .0497 0 .118 
VTS 0. 9091 0 .000 0 .5999 0 .004 0 .6046 0 .003 0 ,8512 0 .000 0 .9374 0 .011 
PVN60 0. 9802 0 .000 0 .0107 0 .081 0 .0413 0 .052 0 .7488 0 .001 0 .0083 0 .165 
PVN135 0. 9441 0 .000 0 .0970 0 ,035 0 .2008 0 .021 0 ,8359 0 .001 0 .2380 0 .070 

aij. 
Tg, Tsp 

Tsp 
Hone 
Tsp 
Tsp 

Low-tempeiatme aaddng |»opefties 

CT 0,0036 0.104 0.2035 0.021 0.9654 0.000 0.2546 0,017 0.0125 0.155 Tg, MH 
TES 0.0016 0.120 0.0022 0.114 0.0216 0.066 0.8811 0.000 0.0008 0.221 Tg, Tsp 
S23 0.0002 0.161 0.0001 0.280 0.0006 0.140 0.9183 0.000 0.0001 0.402 ALL 
S29 0.0009 0.133 0.0001 0.211 0.0009 0.133 0.9954 0.000 0.0001 0.345 ALL 
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Table 28. Regression analyses between Physical properties and HP-GPC parameters (n=73) 

Selected 
Dependent LMS LMS+MMSl 3-SLICB 4-SLICE 8-SLICE variables 
Variable P—value r^ P—value r- P—value r" P—value r^ P—value r^ from stepwise 

regression 

Rhedogical piopeities 

P5 0.0004 0.161 0 .0001 0. .245 0. .0001 0.333 0,0001 0.356 0,0001 0.568 X2,X4, X5,X7,X8 
P25 0.0001 0.248 0 .0001 0 .385 0 .0001 0.432 0.0001 0.429 0,0001 0,549 X4, X6,X7,X8 
P4 0.0001 0.191 0 .0001 0 .298 0 .0001 0.378 0,0001 0.389 0.0001 0,560 X2,X7 
VIS25 0.0012 0.139 0 .0001 0 .253 0 .0001 0.302 0,0002 0.278 0,0001 0,462 X4, X6,X7,X8 
CF 0.0500 0.053 0 .0001 0 .283 0 .0001 0.339 0,0001 0,475 0,0001 0.546 X2 
SI 0.0173 0.077 0 .0001 0 .311 0 .0001 0.369 0,0001 0,457 0.0001 0,509 X2,X4 
VIS60 0.0421 0.057 0 .0001 0 .185 0 .0006 0.221 0,0006 0.249 0.0001 0.325 X2 
VIS135 0.0036 0.113 0 .0001 0 .361 0 .0001 0.416 0.0001 0.475 0.0001 0.588 X7,X8 
SP 0.0001 0.208 0 .0001 0 .353 0 .0001 0.391 0,0001 0.367 0.0001 0,505 X4, X6,X7,X8 

Tempeiatuie susceptibility 

PR 0.0004 0.161 0 ,0001 0 .258 0 .0001 0.278 0,0001 0.307 0.0001 0,420 X5 
PI 0.2533 0.018 0 .1021 0 .037 0 .0523 0,105 0,0282 0-146 0,0366 0.218 X3,X4,X6 
CN 0.1110 0.035 0 ,0208 0 .073 0 ,1480 0,074 0.1827 0.086 0.1447 0,166 X5 
VTS 0.1798 0.025 0 .6095 0 .004 0 ,8754 0,010 0,4803 0.049 0,2465 0.142 X3 
PVN60 0,2874 0.016 0 ,0099 0 ,090 0 .0700 0,097 0,0061 0.188 0,0076 0.268 X2,X8 
PVN135 0.7255 0,002 0 ,0619 0 ,048 0 .2190 0,062 0,0001 0.301 0.0001 0.433 X2,X8 

Low-tempeiatme ending propeities 

CT 0.2700 0,017 0 .2242 0 .021 0 .0515 0,106 0,0103 0.174 0,0001 0.311 X1,X2,X7 
TES 0.0001 0,205 0 .0001 0 .273 0 .0001 0.317 0,0001 0.354 0,0001 0.432 X2,X7 
S23 0.0032 0,116 0 ,0001 0 .236 0 .0001 0,334 0.0001 0.326 0.0001 0.411 X2,X7 
S29 0.0099 0.090 0 .0001 0 .211 0 .0001 0.319 0.0001 0,316 0.0001 0.467 XI, ,X2,X7,X3 
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correlation to each other. Therefore, it would be meaningful to use both TMA and HP-

OPC parameters to predict Geological properties. Table 29 gives a summary of the 

regression analyses performed on physical properties versus TMA and HP-GPC 

parameters combined. These regression analyses give considerably higher values tlian 

the regression analyses using TMA or HP-GPC parameters alone. The regression 

coefficient matrix for Table 29 is given in Appendix A. The comparison of the actual 

physical properties with predicted properties obtained using regression equations in 

Appendix A is shown in Appendix B. 

Among TMA and HP-GPC parameters, more significant parameters were 

identified by use of the stepwise linear regression technique. While, as indicated above, 

Tsp, of the TMA parameters, was significantly correlated with rheological properties, X2 

and X7, among HP-GPC parameters, most dominantly relate to rheological and low-

temperature properties. Slices X2 and X7 seem to be the most important among the 

eight slices. Slice X2 may best represent large size molecules and their increase in 

number upon aging while slice X7 may best represent small size molecules and their 

decrease in number upon aging. 

C. Proposed Asphalt Specifications for the State of Iowa 

The selection of the proper grade of asphalt for a given paving project must be 

based on consideration of climate (temperature), traffic, pavement thickness, and the 

prevailing construction conditions. The selection of an asphalt within a given grade 

must be based on its temperature susceptibility and predicted durability. The 
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Table 29. Regression analyses: physical properties against TMA and IIP-GPC 
parameters (n=73) 

TMA & HP-GPC Selected variables 
parameters from stepwise reg. 

Dependent 
Variables P-value r^ TMA parameter HP-GPC parameter 

Rheological properties 

P 5  0 . 0 0 0 1  0 . 6 6 6  Tsp X2, X 6,X7 
P 2 5  0 . 0 0 0 1  0 . 6 6 9  Tsp,ML,MH X4, X 6,X7 
P 4  0 . 0 0 0 1  0 . 6 6 7  Tsp X2, X 4 , X 6 ,  X7, X 8  
VIS25 0 . 0 0 0 1  0 . 7 6 6  Tap X2, X 4 , X 6 ,  X7, M M T , P I D X  
C F  0 . 0 0 0 1  0 . 7 4 1  T g  , T s p,ML,MH X2 
S I  0 . 0 0 0 1  0 . 7 1 9  T g  X2 
V I S 6 0  0 . 0 0 0 1  0 . 5 8 3  Tap X 8  
VIS135 0 . 0 0 0 1  0 . 7 7 3  T#p, M L , M H  X7 
S P  0 . 0 0 0 1  0 . 2 0 8  T#p,ML,MH XI X3 X6, MWT 

Temperature susceptibility 

P R  0 . 0 0 0 1  0 . 6 3 6  Tsp X 2,X4, X 5  
P I  0 . 0 5 1 7  0 . 3 0 9  Tg,Tsp X4, P I D X  
C N  0 . 2 0 7 6  0 . 2 4 6  Tsp X 5  
VTS 0 . 5 1 2 1  0 . 1 8 7  

Tsp 
X 3  

PVN60 0 . 0 0 9 8  0 . 3 6 8  X 2 , X 8  
PVN135 0 . 0 0 0 1  0 . 4 9 6  X2,X6 

Low-temperature cracking properties 

C T  0 . 0 0 0 8  0 . 4 3 8  T g  X 2,X5,X7, X 8  
TES 0 . 0 0 0 1  0 . 5 6 4  T g  X 2,X7 
S 2 3  0 . 0 0 0 1  0 . 6 5 5  T#p, M L , M H  X2, X 4,X7, P I D X  
S 2 9  0 . 0 0 0 1  0 . 5 8 8  Tsp,ML,MH X 2 , X 5,X7 

Note; Bold face indicates more significantly correlated variables 
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temperature susceptibility of an asphalt influences the mixing, placing, and compaction 

of paving mixtures as well as the high and low temperature performance of the 

pavement. The durability of an asphalt or its resistance to hardening and aging, both 

during construction and in-service, affects the pavement life. 

It is generally accepted that the major causes of asphalt hardening are 

volatilization during mixing at high temperatures (short-term aging) and oxidation during 

service in pavement (long-term aging). Current asphalt specifications, while containijig 

requirements for indirect control of temperature susceptibility and asphalt hardening 

during hot-plant mixing, offer no prediction over long-term durability. Trial 

specifications based on the Iowa pressure oxidation test are proposed. This procedure 

was developed based on consideration of the two stages of hardening processes of 

asphalt in their logical order and of the differences in aging mechanisms and their 

effects. 

Trial asphalt specifications for Iowa conditions have been developed based on a 

realistic durability test, performance related physical properties, compositional properties 

from HP-GPC, and low-temperature properties from TMA. Many researchers have 

proposed certain physical properties of asphalts and their critical limits for acceptable 

pavement performance. Some of these suggested properties are penetration at 25°C, 

R&B softening point, viscosity at 2S°C, shear index, penetration-viscosity number, and 

stiffness at low temperature, as summarized in Table 30. Although, due to insufficient 

field performance data, direct correlations between HP-GPC and TMA parameters and 

field performance are not yet available at this stage, critical values of HP-GPC and 
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Table 30. Critical values for performance related parameters and their corresponding HP-GPC and TMA parameters 

Coneqwnding Cone^xmding 
HP-GPC parameters TMA parameters 

Paramter Critical Values Reference X2, % X7,% Tg,X Tsp,°C ML, piq/*C 

P25 >20 28 < 18.0 >5.0 < -18.5 <31.0 <039 
SI <0.55 58 < 18.1 > 4.6 <36.0 <0.60 
R&B SP < 65.5°C 28 < 18.7 > 4.6 <31.2 <0.45 
VIS25 < 2 mega Pa s 28 < 18.2 >5.2 < -17.5 <28.0 <0.42 
PVN60 >-1.3 35 >9.8 < 13.6 
PVN135 >-1.0 76 > 11.9 < 12.7 
S23 > 138 MPa 57 < 19.5 >3.7 < -17.0 <32 J <0.47 



www.manaraa.com

138 

TMA parameters were indirectly estimated from correlations with the performance 

related physical properties given in Table 30. Since changes of asphalt properties 

beyond five years of aging are usually small, the critical values discussed above are 

recommended as limiting values in specifications for an asphalt pressure-oxidized for 46 

hours at 65.6''C and at a pressure of 20 atm of oxygen which simulates five year field 

aging under Iowa conditions. 

Cracking temperature criteria have been suggested in pavement design to prevent 

a low-temperature asphalt pavement transverse cracking problem [5]. In this design 

method, the cracking temperature determined from penetrations at S°C and 2S°C should 

be lower than the minimum pavement design temperature. For Iowa climates, a 

minimum pavement temperature of -35°C was estimated. The minimum penetrations at 

5°C for AC-S, AC-10, and AC-20 and this cracking temperature were determined from 

the cracking temperature nomograph as 10, 8, and 7, respectively. 

To assure long term durability, it seems necessary to limit the long term aging 

index, i.e. the ratio of viscosity at 60°C after pressure-oxidation for 46 hours to viscosity 

at 60®C after TFOT. The long term aging indices for the 10 project asphalts range from 

2.9 to 3.5 except the project 2 asphalt which has a long term aging index of 6.3. Based 

on this observation, a critical maximum long term aging index of S is tentatively 

suggested. This criterion limits the maximum allowable viscosity at 60°C after the 

pressure oxidation to 1,000 to 4,000 Pa s. These values are in agreement with Sisko 

and Brunstnim's observation [99]. They reported that, for cracked pavements, the 

viscosities of recovered asphalts were higher than 1,000 to 4,000 Pa s. 
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The proposed specifications, based on the pressure oxidation test and existing 

AASHTO M226, Table 2, is given in Table 31. Limiting values can be increased or 

decreased as more field performance data become available. 

The usefulness of tfie percentage of the LMS fraction in the original asphalt and 

its change after laboratory aging to predict asphalt pavement performance has been 

recognized [50,54], Although they are not included in the trial specifications due to 

insufficient performance data, it is recommended that they be included when long-term 

performance data become available. 
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Table 31. Proposed trial specification for asphalt cements 

Test AC-5 AC-10 AC.20 

Original asphalt 

Viscosity at 60®C, Pa s ' 50±10 100120 200±40 

Viscosity at 135®C, 10"® mVs, min. ' 175 250 300 

Penetration at 25*C, 0.1mm, min. ' 140 80 60 

Flash point, ®C, min. ' 177 219 232 

Solubility in trichloroethylene, %, min. * 99.0 99.0 99.0 

Residue from thin film oven test 

Viscosity at 60®C, Pa s, max. ' 200 400 800 

Residue from pressure-oxidation (46 hour Iowa durability test) 

Viscosity at 60®C, Pa s, max. 1,000 2,000 4,000 

Penetration, 25®C/100g/5s, 0.1mm, min. 20 20 20 

Penetration, 4®C/200g/60s, 0.1mm, min. 5 5 5 

Penetration, 5®C/100g/5s, 0.1mm, min. 10 8 7 

R&B softening point, *C, max. 65.5 65.5 65.5 

Stiffness, -23®C/10,000s, MPa, max. 138 138 138 

Viscosity, 25°C, mega Pa s, max. 2 2 2 

Shear susceptibility, max. 0.55 0.55 0.55 

X2 (HP-GPC), %, max. 20 20 20 

X7 (HP-GPC), %, min. 5 5 5 

T, (TMA), ®C, max. -10 -10 -10 

Tsp (TMA), ®C, max. 28 28 28 

ML (TMA), pm/®C, max. 0.4 0.4 0.4 

' AASHTO M226, Table 2 
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VI. SUMMARY AND CONCLUSIONS 

Three groups of asphalt samples were tested during this investigation including: 

(a) 12 samples from local asphalt suppliers and their TFOT residues, (b) six core 

samples of known service records, and (c) a total of 79 asphalts from 10 pavement 

projects including original, lab aged, and recovered asphalts from lab mixes, field mixes, 

and pavement cores. They were studied by physical and physicochemical tests including 

standard rheological tests, HP-GPC, and TMA. Some specific viscoelastic tests were 

run at 5°C on the (b) samples and on some (a) samples. DSC and XRD studies were 

also performed on the (a) and (b) samples. In addition, NMR techniques were applied 

to some (a), (b), and (c) samples. 

Efforts were made to identify physicochemical properties which correlated to 

physical properties known to affect field performance. The significant properties fonned 

the basis for the recommended performance-based trial specifications for Iowa to ensure 

better pavement performance. 

Conclusions of a general nature are summarized below: 

(1) With each viscosity grade of asphalt available in Iowa and meeting AASHTO 

specification M226, there were differences in temperature susceptibility between 

the samples supplied by different suppliers and between samples from the same 

supplier taken at different times. 

(2) Distinctly different HP-GPC chromatograms, TA results, XRD patterns were 

obtained for asphalts of the same grade, from the same supplier, but supplied at 

different times. 
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(3) The greatly different effect of a cold shock at -30°C on tlie viscoelastlc properties 

of the core asphalt from the Sugar Creek surface course from the other samples 

might have important bearing on its poor field performance. 

(4) No decisive correlation is observed among HP-GPC, DSC, and XRD results. 

(5) The HP-GPC technique is very sensitive for monitoring aging and can also be used 

to predict behavior and performance of asphalts. 

(6) The endothermic peaks in a DSC thermogram indicate the presence of crystallizable 

components and can be used to evaluate the low-temperature performance of 

asphalts. The enthalpy changes (AH) are, on the whole, more pronounced in 

virgin asphalts of Jebro origin than in the Koch asphalts. 

(7) Asphalts used in the 1988 construction season came from a limited number of 

sources in Iowa and showed differences not obvious by either physical or 

physicochemical tests alone. For example, the asphalt used in Project 7 had a 

large percent increase in LMS due to aging but this was not reflected by changes 

in physical properties, e.g. viscosity ratio. On the other hand, the asphalt used in 

Project 11 had a liigh viscosity ratio after TFOT aging, but this was not reflected 

in an increase in LMS. 

(8) The ratio of changes in %LMS to changes in physical properties upon aging could 

be used as compatibility index for asphalts. 

(9) Of two accelerated laboratoiy aging procedures for long term performance, the 

pressure-oxidation procedure seems to be superior to the mix aging procedure. 

The pressure-oxidation test is a simpler, faster, less expensive, and more reliable 
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procedure. 

(10) Aging, both in the field and in the laboratory, is accompanied by hardening, a 

reduction in temperature susceptibility by most measures, an increase in shear 

susceptibility, a decrease in complex flow, an increase in temperature for limiting 

stiffness, an increase in stiffness at low temperatures, an increase in LMS, and a 

decrease in SMS. For some asphalts, aging characteristics at high-temperature 

(short-term aging) and at service temperature (long-term aging) were very 

different. 

(11) The glass transition temperatures determined by TMA correlated weakly with those 

detennined by DSC but correlate fairly well with low-temperature cracking 

properties. 

(12) Both TMA and HP-GPC parameters correlated well with physical properties. Tsp 

correlates well with both rheological and low-temperature properties, T, 

correlates well with low-temperature properties, and ML is a strong predictor of 

rheological properties. Molecular size distribution based on HP-GPC and the 8-

slice method can be used to predict many physical properties. 

(13) While TMA parameters and HP-GPC parameters did not correlate well, physical 

and low-temperature properties can be predicted by combinations of these two 

sets of parameters, especially using Tsp, ML, X2, and X7. 

(14) Asphalt specifications for Iowa climates were developed based on consideration of 

the long-term durability test and performance related physicochemical properties. 
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VIL RECOMMENDATIONS 

A tentative specification for paving asphalts, including IDT durability requirements, 

as well as chemical and low-temperature requirements, is recommended. 

Continued observations and tests of the 10 pavements are recommended because of a 

lack of sufficient data on critical values of critical properties under Iowa 

weathering and traffic conditions. The critical values for Iowa conditions are 

needed so the specifications can be refined to yield a truly performance-based 

asphalt specification. 

No critical values for physical or chemical properties are available in the literature 

nor are given in the tentative qwciHcation concerning moisture sensitivity of 

asphalt-aggregate mixes. Research investigating the relationship between asphalt 

composition and asphalt-aggregate-moisture interaction is needed so that moisture 

related distresses can be addressed in the specification. 

In addition to the size characterization of asphalt by HP-GPC, development of simple 

and reliable tools better characterizing the polarity distribution and the 

aromaticity of asphalts are needed in order to obtain complete chemical 

information on asphalts and, therefore, to further refine the tentative 

specification. 
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APPENDIX A. REGRESSION COEFFICIENT MATRIX 
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P5 P25 P4 R&B SP VIS25 
0.1mm 0.1mm 0.1mm ®C Pas 

Intercept 3.76E+02 7.19E+03 1.79E+03 -5.54E+02 4.81E+07 
XI -5.61E+00 -1.05E+02 -2.48E+01 1.23E+01 -5.88E+04 
X2 -1.29E+00 -3.05E+01 -8.17E+00 -2.53E+00 -l.OOE+06 
X3 -4.46E+00 -l.llE+02 -2.38E+01 1.60E+01 1.79E+04 
X4 -9.87E-01 -4.11E+01 -1.22E+01 -4.81E+00 -1.33E+06 
X5 -7.80E+00 -4.53E+01 -1.53E+01 9.73E-01 -5.76E+05 
X6 -9.07E+00 -1.79E+02 -4.98E+01 2.67E+01 1.06E+06 
X7 9.03E+00 6.30E+01 3.27E+01 -1.44E+01 -2.04E+06 
X8 -6.73E+00 -7.38E+01 -2.40E+01 8.01E+00 -1.21E+05 
MWT 1.91E-03 6.51E-02 1.46E-02 -4.66E-03 2.59E+02 
POLYIDX 4.35E-02 -1.95E+01 -5.49E+00 -1.96E+00 -5.56E+05 
T, -6.94E-02 6.80E-01 1.82E-02 -2.63E-01 -2.75E+03 
Tsp -1.71E-01 -1.94E+00 -7.46E-01 4.95E-01 4.03E+04 
ML -1.58E+01 -2.88E+02 -7.20E+01 4.59E+01 2.34E+06 
MH 1.23E+01 1.64E+02 4.79E+01 -2.60E+01 -1.42E+06 

CF SI VIS60 
Pas 

VIS135 
10"® mVs 

PR 

Intercept -8.79E-01 5.40E+00 -7.89E+04 -2.26E+04 -7.23E+00 
XI -7.25E-02 3.31E-02 1.22E+03 3.81E+02 1.78E-01 
X2 1.55E-0I -1.86E-01 1.93E+02 -8.14E+01 -4.31E-02 
X3 -1.79E-01 1.25E-01 1.77E+03 7.44E+02 2.39E-01 
X4 2.96E-01 -2.97E-01 -7.66E+02 -3.51E+02 -8.88E-02 
X5 -6.26E-02 -4.65E.03 2.14E+02 2.14E+01 -3.30E-02 
X6 .1.45E-01 1.18E-01 3.32E+03 1.05E+03 3.07E-01 
X7 2.95E-01 -2.95E-01 -9.83E+02 -6.63E+02 -1.24E-02 
X8 -9.97E-02 4.52E-02 8.85E+02 5.14E+02 4.30E-02 
MWT -4.15E-05 6.80E-05 7.80E-01 3.49E-01 -6.01 E-05 
POLYIDX 1.21E-01 -1.30E-01 -9.62E+02 -3.66E+02 -5.18E-02 
T, l,01E-02 -9.80E-03 -2.97E+01 -2.43E+00 -3.93E-03 
Tsp -5.29E-03 6.07E-03 8.17E+01 1.80E+01 3.78E-03 
ML -8.76E-01 6.78E-01 7.82E+03 1.64E+03 6.47E-01 
MH 3.50E-01 -3.28E-01 -4.60E+03 -9.90E+02 -2.85E-01 
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PI CN VTS PVN60 PVN135 

Intercept -8.23E-01 1.57E+03 -1.41E+01 -5.26E+01 -2.46E+00 
XI 3.69E-01 -1.72E+01 2.28E-01 5.00E-01 -8.38E-02 
X2 -6.42E-01 -1.56E+01 1.92E-01 5.30E-01 -1.96E-02 
X3 1.06E+00 -2.28E+01 1.16E.01 9.90E-01 5.02E.01 
X4 -1.05E+00 5.28E+00 5.13E-02 -5.45E-01 -5.30E-01 
X5 -4.56E-01 -1.51E+01 2.18E-01 6.07E-01 -4.85E-02 
X6 6.83E-01 -3.84E+01 4.57E-01 1.16E+00 2.59E.02 
X7 3.76E-02 6.30E-01 9.67E-03 8.34E-02 -5.68E-02 
X8 -7.71E-02 -1.81E+01 1.06E-01 7.88E-01 3.70E-01 
MWT -6.81E-05 -8.25E-03 -6.05E-05 7.23E-04 6.27E-04 
POLYIDX -2.78E-01 7.59E+00 -6.28E-03 -5.14E-01 -3.59E-01 
T, -4.48E-02 3.76E-02 -3.40E-03 l.OOE-03 9.44E-03 
Tsp 2.35E-02 -1.51E-01 4.32E-03 2.34E.03 -8.61E-03 
ML 5.31E-01 -4.79E+01 9.50E-01 8.97E-01 -1.20E+00 
MH -1.43E-01 3.52E+01 -5.86E-01 -7.25E-01 5.38E-01 

CT TES S23 S29 
°C MPa MPa 

Intercept -1.25E+02 -1.37E+03 1.86E+03 4.82E+03 
Xi 7.38E.01 1.70E+01 -2.78E+00 -2.91E+01 
X2 1.51E+00 9.81E+00 -4.44E+01 -9.06E+01 
X3 -2.90E+00 1.39E+01 -1.75E+00 -2.46E+01 
X4 1.34E+00 1.34E+01 -3.22E+01 -5.43E+01 
X5 1.12E+01 1.13E+01 -6.97E+00 -7.62E+00 
X6 -3.34E+00 2.83E+01 1.64E+01 -3.34E+01 
X7 .6.54E+00 -1.14E+01 -8.43E+01 -1.38E+02 
X8 6.56E+00 1.99E+01 4.36E-02 -1.55E+01 
MWT 3.05E-03 -2.21E-03 3.17E-03 1.45E-02 
POLYIDX -1.83E+00 -1.03E+00 -1.39E+0I -2.09E+01 
T, 3.26E-01 2.61E-01 6.72E-01 1.39E+00 
Tsp -7.60E-02 3.50E-02 1.31E+00 1.72E+00 
ML -1.26E+0I 2.01E+01 1.17E+02 2.56E+02 
MH -9.09E-01 -1.50E+01 -5.99E+01 -9.88E+01 
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APPENDIX B. PREDICTED VS. MEASURED PROPERTIES 
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